펜톤 화학 반응의 이론적 이해

Theoretical Understanding of Fenton Chemistry

  • 임학규 (서울대학교 공과대학 응용화학부) ;
  • 남궁규철 (스코틀랜드 던디 아버테이 대학) ;
  • 윤제용 (서울대학교 공과대학 응용화학부)
  • Lim, Haegyu (Department of Chemical Engineering, College of Engineering, Seoul National University) ;
  • Namkung, Kyu Cheol (School of Contemporary Science, University of Abertay Dundee) ;
  • Yoon, Jeyong (Department of Chemical Engineering, College of Engineering, Seoul National University)
  • 투고 : 2004.05.18
  • 심사 : 2004.10.11
  • 발행 : 2005.02.10

초록

펜톤 반응(2가 철+과산화수소)은 오늘날 환경기술분야에서 응용 가능성이 높아 큰 주목을 받고 있으며, 그 원리를 응용한 새로운 기술들이 활발하게 연구되고 있다. 하지만 다양한 응용 연구에도 불구하고, 그 화학반응의 상세한 메커니즘은 아직도 명확히 밝혀지지 않았으며 연구자들 사이에 여전히 논쟁이 진행되고 있다. 지금까지 학계에서는 펜톤 반응에서 생성되는 (산화)반응성이 큰 화학종으로 수산화 라디칼 또는 고가 산화철 복합체가 제시되어 왔는데, 본고에서는 이러한 논의들의 핵심적인 내용을 비판적으로 정리, 고찰하고자 하였다.

The Fenton reaction ($Fe^{2+}+H_2O_2$) has attracted considerable attention because of promising applicability as an environmental technology. While the various novel environmental technologies using Fenton reaction have been actively developed, the detailed mechanism of Fenton reaction is not clearly defined yet. As the major oxidizing chemical species, hydroxyl radical and high valent iron complex have been suggested to be produced in Fenton reaction in different mechamisms respectively. We critically summarized the basic issues regarding the microscopic mechanism of Fenton reaction.

키워드

참고문헌

  1. W. C. Bray and M. H. Gorin, J. Am. Chem,. Soc., 54, 2124 (1932) https://doi.org/10.1021/ja01344a505
  2. F. Haber and J. J. Weiss, Proc. R. Soc. London, Ser. A 147, 332, (1934) https://doi.org/10.1098/rspa.1934.0221
  3. 오동규, 윤태일, 화학공업과 기술, 11, 157 (1993)
  4. C. Walling, Acc. Chem. Res., 8, 125 (1975) https://doi.org/10.1021/ar50088a003
  5. C. Walling and A. Goosen, J. Am. Chem. Soc., 95, 2987 (1973) https://doi.org/10.1021/ja00790a042
  6. J. De Latt and H. Gallard, Environ. Sci. Technol., 33, 2726 (1999) https://doi.org/10.1021/es981171v
  7. C. Walling and S. Kato, J. Am. Chem. Soc., 93, 4275 (1971) https://doi.org/10.1021/ja00746a031
  8. C. Walling and G. EI-Taliawi, J Am. Chem. Soc., 95, 844 (1973) https://doi.org/10.1021/ja00784a035
  9. C. Walling and G. EI-Taliawi, J Am. Chem. Soc., 95, 848 (1973) https://doi.org/10.1021/ja00784a036
  10. C. Walling, G. El-Taliawi, and R. A. Johnson, J. Am. Chem. Soc., 96, 133 (1974) https://doi.org/10.1021/ja00808a022
  11. C. Walling and R. A. Johnson, J. Am. Chem. Soc., 97, 363 (1975) https://doi.org/10.1021/ja00835a024
  12. C. Walling and R. A. Johnson, J. Am. Chem. Soc., 97, 2405 (1975) https://doi.org/10.1021/ja00842a016
  13. Y. Lee, C. Lee, and J. Yoon, Chemosphere, 51, 963 (2003) https://doi.org/10.1016/S0045-6535(03)00043-2
  14. Y. Lee, J. Jeong, C. Lee, and J. Yoon, Chemosphere 51, 901 (2003) https://doi.org/10.1016/S0045-6535(03)00044-4
  15. J. Yoon, Y. Kim, J. Huh, Y. Lee, and D. Lee, J. Ind. Eng. Chem., 8, 410 (2002)
  16. J. Yoon, Y. Lee, and S. Kim, Wat. Sci. Technol., 44, 15 (2001)
  17. 윤제용, 최영수, 조순행, 박철휘, 유희찬, 대한환경공학회지, 19, 141 (1997)
  18. 윤제용, 이동수, 박성진, 대한환경공학회지, 18, 999 (1996)
  19. 윤제용, 이윤호, 화학세계, 41, 51 (2001)
  20. T. Oppenlnder, Photochemical purification of water and air, Wiley-VCH (2003)
  21. S. H. Bossmann, E. Oliveros, S. Gob, S. Siegwart, E. P. Dahlen, L. Jr. Payawan, M. Straub, M. Womer, and A. M. Braun, J. Phys. Chern. A, 102, 5542 (1998) https://doi.org/10.1021/jp980129j
  22. M. Masarwa, H. Cohen, D. L. Hickman, A. Bakac, and J. H. Espenson, J. Am. Chem. Soc., 110, 4293 (1988) https://doi.org/10.1021/ja00221a031
  23. D. T. Sawyer, A. Sobkowiak, and T. Matsushita, Acc. Chem. Res., 29, 409 (1996) https://doi.org/10.1021/ar950031c
  24. C. Walling, Acc. Chem. Res., 31, 155 (1998) https://doi.org/10.1021/ar9700567
  25. P. H. MacFaul, D. D. M. Wayner, and K. W. Ingold, Acc. Chem. Res., 31, 159 (1998) https://doi.org/10.1021/ar970057z
  26. S. Goldstein and D. Meyerstein, Acc. Chem. Res., 32, 547 (1999) https://doi.org/10.1021/ar9800789
  27. S. Rahhal and H. W. Richter, J. Am. Chem. Soc., 110, 3126 (1988) https://doi.org/10.1021/ja00218a022
  28. T. Shiga, A. Boukhors, and P. Douzou, J. Phys. Chem., 71, 4264 ( 1967) https://doi.org/10.1021/j100872a017
  29. J. J. Pignatello, D. Liu, and P. Huston, Environ. Sci. Technol., 33, 1832 (1999) https://doi.org/10.1021/es980969b
  30. I. Yamazaki and L. H. Piette, J. Am. Chem. Soc., 113, 7588 (1991) https://doi.org/10.1021/ja00020a021
  31. J. D. Rush and H. J. Bielski, J. Am. Chem. Soc., 108, 523 (1986) https://doi.org/10.1021/ja00263a037
  32. A. Sorokin, A. Robert, and B. Meunier, J. Am. Chem. Soc., 115, 7293 (1993) https://doi.org/10.1021/ja00069a031
  33. C. Walling, R. E. Partch, and T. Weil, Proc. Natl. Acad Sci. U.S.A. 72, 140 (1975)
  34. C. Walling and K. Amarnath, J. Am. Chem. Soc., 104, 1185 (1982) https://doi.org/10.1021/ja00369a005
  35. H. Sugimoto and D. T. Sawyer, J. Am. Chem. Soc., 106, 4283 (1984) https://doi.org/10.1021/ja00327a047
  36. B. Ensing and E. J. Baerends, J. Phys. Chem. A, 106, 7902 (2002) https://doi.org/10.1021/jp025833l
  37. B. Ensing, F. Buda, and E. J. Baerends, J. Phys. Chem. A, 107, 5722 (2003) https://doi.org/10.1021/jp0267149
  38. B. Ensing, F. Buda, M. C. M. Gribnau, and E. J. Baerends, J. Am. Chem. Soc., 126, 4355 (2004) https://doi.org/10.1021/ja038865a