Molecular Phylogeny and Geography of Korean Medaka Fish (Oryzias latipes)

  • Kang, Tae-Wook (National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Eun-Hye (Department of Biology, Chungnam National University) ;
  • Kim, Moo-Sang (Department of Molecular Cellular and Developmental Biology, Yale University) ;
  • Paik, Sang-Gi (Department of Biology, Chungnam National University) ;
  • Kim, Sang-Soo (Department of Bioinformatics, Soongsil University) ;
  • Kim, Chang-Bae (National Genome Information Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2005.01.10
  • Accepted : 2005.05.24
  • Published : 2005.08.31

Abstract

The phylogeny and geography of the medaka (Oryzias latipes) populations of Korea were investigated by analyzing sequence data for the mitochondrial control region. From the 41 haplotypes including 25 Korean haplotypes detected in 64 Korean specimens and data for the Japanese and Chinese populations, phylogenetic and nested clade analyses were executed to examine the phylogeny of haplogroups and the relation of the genetic architecture of the haplotypes to the historical geography of the Korean medaka fish. The analyses suggest that there are two very distinct lineages of Korean medaka, and that these result from reproductive isolation mechanisms due to geographic barriers. The southeastern lineage has experienced recent range expansion to the western region. The northwestern lineage, sister to Chinese populations, showed evidence of internal range expansion with shared haplotypes.

Keywords

Acknowledgement

Supported by : Korea Research Institute of Bioscience and Biotechnology

References

  1. Brookfield, J. F. (2001) Population genetics: the signature of selection. Curr. Biol. 11, R388-390 https://doi.org/10.1016/S0960-9822(01)00215-9
  2. Crandall, K. and Templeton, A. (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134, 959-969
  3. Golding, G. B. (1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genet. Res. 49, 71-82
  4. Hall, T. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. Ser. 41, 95-98
  5. Kim, I. S. (1997) Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 37, p. 629, Freshwater Fishes. Ministry of Education
  6. Kim, I. S. and Kim, S. Y. (1993) Interspecific hybridization between Oryzias sinensis and O. latipes from Korea. Korean J. Ichthyol. 5, 113-121
  7. Kim, I. S. and Lee, E. H. (1992) New records of rice fish, Oryzias latipes sinensis (Pisces, Oryzidae) from Korea. Korean J. Syst. Zool. 8, 177-182
  8. Kim, I. S. and Moon, K. C. (1987) The karyotype of a ricefish, Oryzias latipes from southern Korea. Korean J. Zool. 30, 379-386
  9. Kondo, M., Nanda, I., Hornung, U., Schmid, M., and Schartl, M. (2004) Evolutionary origin of the medaka Y chromosome. Curr. Biol. 14, 1664-1669 https://doi.org/10.1016/j.cub.2004.09.026
  10. Maruyama, T. and Birky, Jr. C. W. (1991) Effects of periodic selection on gene diversity in organelle genomes and other systems without recombination. Genetics 127, 449-451
  11. Matsuda, M., Yamagishi, T., Sakaizumi, M., and Jeon, S. R. (1997) Mitochondrial DNA variation in the Korean wild population of medaka, Oryzias latipes. Korean J. Limnol. 30, 119-128
  12. Naruse, K., Hori, H., Shimizu, N., Kohara, Y., and Takeda, H. (2004) Medaka genomics: a bridge between mutant phenotype and gene function. Mech. Dev. 121, 619-628 https://doi.org/10.1016/j.mod.2004.04.014
  13. Page, R. D. (1996) TreeView: an application to display phylogenetic trees on personal computer. Comput. Appl. Biosci. 12, 357-358
  14. Posada, D., Crandall, K. A., and Templeton, A. R. (2000) Geo- Dis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9, 487-488 https://doi.org/10.1046/j.1365-294x.2000.00887.x
  15. Ronquist, F. and Huelsenbeck, J. P. (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574 https://doi.org/10.1093/bioinformatics/btg180
  16. Sakaizumi, M. and Jeon, S. R. (1987) Two divergent groups in the wild populations of medaka Oryzias latipes (Pisces: Oryzitidae) in Korea. Korean J. Lim. 20, 13-20
  17. Salzburger, W., Brandstatter, A., Gilles, A., Parson, W., Hempel, M., et al. (2003) Phylogeography of the vairone (Leuciscus souffia, Risso 1826) in Central Europe. Mol. Ecol. 12, 2371-2386 https://doi.org/10.1046/j.1365-294X.2003.01911.x
  18. Swofford, D. L. (2000) Phylogenetic Analysis Using Parsimony and Other Methods (Software). Sinauer Associates, Sunderland, MA
  19. Takahashi, H. and Goto, A. (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol. Phylogenet. Evol. 21, 135-155 https://doi.org/10.1006/mpev.2001.1001
  20. Takehana, Y., Uchiyama, S., Matsuda, M., Jeon, S. R., and Sakaizumi, M. (2004a) Geographic variation and diversity of the cytochrome b gene in wild populations of medaka (Oryzias latipes) from Korea and China. Zool. Sci. 21, 483- 491 https://doi.org/10.2108/zsj.21.483
  21. Takehana, Y., Jeon, S.-R., and Sakaizumi, M. (2004b) Genetic structure of Korean wild populations of the medaka Oryzias latipes Inferred from allozymic variation. Zool. Sci. 21, 977- 988 https://doi.org/10.2108/zsj.21.977
  22. Templeton, A. R. (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol. Ecol. 7, 381-397 https://doi.org/10.1046/j.1365-294x.1998.00308.x
  23. Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992) A cladistic analysis of phenotypic associations and haplotypes inferred from restriction endonuclease mapping and sequence data. III. Cladogram estimation. Genetics 132, 619-633
  24. Templeton, A. R., Routman, E., and Phillips, C. A. (1995) Separating population structure from population history: a cladistic analysis of geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140, 767-782
  25. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  26. Uwa, H. and Jeon, S. R. (1987) Karyotypes in two divergent groups of a ricefish, Oryzias latipes, from Korea. Korean J. Limnol. 20, 139-147
  27. Verheyen, E., Salzburger, W., Snoeks, J., and Meyer, A. (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300, 325-329 https://doi.org/10.1126/science.1080699
  28. Wittbrodt, J., Shima, A., and Schartl, M. (2002) Medaka-a model organism from the Far East. Nat. Rev. Genet. 3, 53-64 https://doi.org/10.1038/nrg704
  29. Zardoya, R., Castilho, R., Grande, C., Favre-Krey, L., Caetano, S., et al. (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol. Ecol. 13, 1785-1798 https://doi.org/10.1111/j.1365-294X.2004.02198.x