Effect of Organic Residue on the Continuous Pyrolysis of Waste Polystyrene

연속식 폐 EPS 열분해 반응에 대한 잔류물의 영향

  • Yoon, Byung Tae (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Seong Bo (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang Bong (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Myoung Jae (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 윤병태 (한국화학연구원 화학기술부 환경.자원기술연구팀) ;
  • 김성보 (한국화학연구원 화학기술부 환경.자원기술연구팀) ;
  • 이상봉 (한국화학연구원 화학기술부 환경.자원기술연구팀) ;
  • 최명재 (한국화학연구원 화학기술부 환경.자원기술연구팀)
  • Received : 2004.06.08
  • Accepted : 2004.10.11
  • Published : 2005.02.28

Abstract

Oil formation rate, composition of crude oil and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer on thermal degradation of polystyrene were affected by various factors. Especially, formation of organic residue formed during reaction gave an important influence on formation of oil and composition of crude oil. Also, composition of formed crude oil showed a significant difference on reaction time. These results were caused by organic residue and carbonized solid formed during continuous reaction. Increase of residue and carbonized solid gave a decrease of yield of styrene and an increase of formation of ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene. New reaction system was proposed for continuous operation at the thermal degradation of polystyrene.

폴리스티렌의 열분해반응에서 분해반응속도 및 생성되는 오일 중에 함유된 스틸렌모노머와 부산물로 얻어지는 에틸벤젠, 알파메틸스티렌, 다이머, 트라이머 등은 반응온도 및 반응시간 등의 여러 가지 변수들에 의해 영향을 받았으며, 특히 반응시간에 따라 반응성 및 스티렌의 수율은 많은 차이를 보였다. 이 결과는 열분해 반응과정에서 생성되는 유기성 잔류물과 고화탄소의 영향 때문에 기인하였다. 연속열분해시간의 진행과 함께 생성되는 오일의 수율이 저하되었으며 오일에 함유되어 있는 스티렌의 선택도는 감소하였으며 부산물인 알파메틸스티렌, 에틸벤젠, 벤젠, 톨루엔 등의 부산물의 생성은 증가하였다. 본 연구결과로부터 새로운 연속반응을 위한 열분해반응기를 사용하였다.

Keywords

References

  1. Williams, V., Symposium of Waste Plastic Recycle, Tokyo 21 (1993)
  2. MOST, Study on Technical Trend for Recycle of Waste Plastics, 37(2000)
  3. Shun, D. W., Han, K. H. and Son, J. E., 'Technical Trend on Thermal Degradation in Japan,' Chemical Industry and Technology, 14(4), 371-378(1996)
  4. Liebman, S. A. and Levy, E. J., 'Pyrolysis and GC in Polymer Analysis,' MARCEL DEKKER, Inc., 149-158(1980)
  5. Nishizima, H., Sakakibara, M. and Yoshida, K., 'Oil Recovery from Atatic Polypropyrene by Fludized Bed Reactor,' Nippon Kagaku Kaishi, 1989-1999(1977)
  6. Kim, J. S., Kim, S. J., Yun, J. S., Kang, Y. and Choi, M. J., 'Pyrolysis Characteristics of Polystyrene Wastes in a Fludized Bed Reactor,' HWAHAK KONGHAK, 39(4), 465-469(2001)
  7. Shun, D. W., Ghim, Y. S., Cho, S. H. and Son, J. E., 'Pyrolysis of Polystyrene in a Fludized Bed Reactor,' Korea Solid Wastes Eng. Sci., 10(2), 195-201(1993)
  8. Zhang, Z., Hirose, T., Nishio, S., Morioka, Y., Azuma, N. and Ueno, A., 'Chemical Recycling of Waste Polystyrene Into Styrene Over Solid Acids and Bases,' Ind. Eng. Chem. Res. 34(12), 4515-4519(1995)