Temperature Effect on the Retention Behavior of Sugars in Ion Exchange Chromatography

이온 교환 크로마토그래피에서 온도가 당의 체류 특성에 미치는 영향

  • Kim, Jin-Il (Department of Biological Engineering, Inha University) ;
  • Lee, Chong-Ho (ERC for Advanced Bioseparation Technology, Inha University) ;
  • Koo, Yoon-Mo (Department of Biological Engineering, Inha University)
  • 김진일 (인하대학교 생물공학과) ;
  • 이종호 (인하대학교 초정밀생물분리기술연구센터) ;
  • 구윤모 (인하대학교 생물공학과)
  • Received : 2005.09.30
  • Accepted : 2005.11.25
  • Published : 2005.12.31

Abstract

Dow99Ca350 (Dowex monosphere 99Ca/350 separation resin), MFG-220, and Finex CS-10GC are ion-exchange resins, and primarily used to separate sugars, and all of these resins have poly styrene DVB backbone, and sulfonyl group. These resins are already used to separate sugars continuously at sugar industry at constant temperature. These resins are used in experiments for understanding temperature effect on retention or adsorption behavior. Using Dow99Ca350, swelling test, porosity test, pulse test, and frontal analysis at various temperatures were performed. In the cases of MFG-220, and Finex CS-10GC, the effect of temperature variation was verified by pulse test. The experimental results are shown that Dow99Ca350, MFG-220, and Finex CS-10GC, which are commercial resins for sugar separation, are stable to temperature variation because the maximum change of retention time of fructose, and glucose are 1.76, and 3.37% respectively.

Dow99Ca350, MFG-220, Finex CS-10GC는 이온 교환 수지로써, 당 분리에 주로 사용되며, 모두 poly styrene DVB를 기본 골격으로 술폰산염, 혹은 술폰산을 작용기로 하고 있다. 이 분리 수지들은 이미 제당 산업의 연속 분리 공정에서 사용되고 있으며, 이에 대해 본 실험은 온도의 영향으로 인한 Dow99Ca350, MFG-220과 Finex CS-10GC의 분리수지에서 당의 체류 혹은 흡착 특성 변화를 알아보기 위하여 수행되었다. 당 분리의 시료로써 사용된 물질은 과당과 포도당으로써 위의 분리 수지와 함께 제당 산업에서 널리 사용된다. Dow99Ca350의 팽윤 시험, 공극률 시험, 펄스 시험, 전단 분석을 통해 온도에 대한 영향을 확인하였다. MFG-220, Finex CS-10GC의 경우, 펄스 시험을 통해 온도 변화에 의한 크로마토그램의 변화를 알아보았다. 실험의 결과 Dow99Ca350, MFG-220과 Finex CS-10GC는 과당과 포도당 각각 최대 1.76, 3.37%의 체류 시간 변화를 보임으로써 온도에 안정적인 경향성을 보였다.

Keywords

References

  1. Ruthven, D. M. and Ching, C. B., 'Counter-Current and Simulated Counter-Current Adsorption Separation Processes,' Chem. Eng. Sci., 44(2), 1011-1038(1989) https://doi.org/10.1016/0009-2509(89)87002-2
  2. Guiochon, G., 'Preparative Liquid Chromatography,' J. Chromatogr. A., 965(1-2), 129-161(2002) https://doi.org/10.1016/S0021-9673(02)00235-2
  3. Guichon, G., Golshan-Shirazi, S. and Jaulmes, A., 'Computer Simulation of the Propagation of a Large-concentration Band in Liquid Chromatography,' Anal. Chem., 60(18), 1856-1866(1988) https://doi.org/10.1021/ac00169a005
  4. Saska, M., Clarke, S. J., Wu, M. D. and Iqbal, K., 'Glucose- Fructose Equilibria on Dowex Monosphere 99 CA Resin under Overloaded Conditions,' J. Chromatogr. A., 590(2), 147-151(1992) https://doi.org/10.1016/0021-9673(92)87016-2
  5. Gorges, G, Sadroddin, G S. and Antia, M. K., Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, New York(1994)
  6. Seidel-Morgenstern, A., 'Experimental Determination of Single Solute and Competitive Adsorption Isotherms,' J. Chromatogr. A., 1037(1-2),255-272(2004) https://doi.org/10.1016/j.chroma.2004.03.031
  7. Lai, S.-M. and Lin, Z.-C., 'Measurement of Adsorption Characteristics of Enantiomers on Chiral Columns: Comparison of the Frontal and Elution Chromatographic 'Iechniquex' Sep. Sci. Technol., 34(16),3173-3196(1999) https://doi.org/10.1081/SS-100100829
  8. De Jong, A. W. J., Kraak, J. C., Poppe, H. and Nooitgedacht, F., 'Isotherm Linearity and Sample Capacity in Liquid ChromatographY,' J. Chromatogr. A., 193(2), 181-195(1980) https://doi.org/10.1016/S0021-9673(00)81486-7
  9. Hashimoto, K., Shirai, Y., Adachi, S. and Horie, M., 'Effect of the Content of Divinylbenzene in Ion-Exchange Resins on the Chromatographic Separation of u-Cyclodextrin and Glucose,' J. Chromatogr. A., 448, 241-248(1988) https://doi.org/10.1016/S0021-9673(01)84586-6
  10. Vente, J. A., Bosch, H., De Haan, A. B. and Bussmann, P. J. T., in: Lee, C. H., The Third Pacific Basin Conference on Adsoption Sciences and Technology, World Scientific, Kyongju, South Korea, (2003)
  11. Wankat, P. C., Rate-Controlled Separations, Glasgow, London (1994)
  12. Castells, C. B. and Castells, R C., 'Peak Distortion in ReversedPhase Liquid Chromatography as a Consequence of Viscosity Differences between Sample Solvent and Mobile phase,' J. Chromatogr. A., 805(1-2), 55-61(1998) https://doi.org/10.1016/S0021-9673(98)00012-0