Pituitary Adenylate Cyclase-Activating Polypeptide에 의한 배란 조절에 관한 연구

Control Mechanisms of Ovulation by Pituitary Adenylate Cyclase-Activating Polypeptide

  • 이여일 (전남대학교 의과대학 산부인과학교실) ;
  • 김형춘 (전남대학교 의과대학 산부인과학교실) ;
  • 김미영 (전남대학교 의과대학 산부인과학교실) ;
  • 전상영 (전남대학교 호르몬 연구센타)
  • Lee, Yu-Il (Department of Obstetrics and Gynecology, Medical School Chonnam National University) ;
  • Kim, Hyoung-Choon (Department of Obstetrics and Gynecology, Medical School Chonnam National University) ;
  • Kim, Mi-Young (Department of Obstetrics and Gynecology, Medical School Chonnam National University) ;
  • Chun, Sang-Young (Hormone Research Center, Chonnam National University)
  • 발행 : 2005.06.30

초록

배 경: Pituitary adenylate cyclase-activating polypeptide (PACAP)은 양의 시상하부에서 추출된 신경펩타이드 호르몬으로 난소에도 존재하여 배양된 과립막 세포에서 스테로이드합성과 cyclic AMP 형성을 촉진함이 보고되었다. 목 적: 흰쥐 난소를 실험 모델로 사용하여 배란시 황체화호르몬 (luteinizing hormone; LH)에 의해 유도된 PACAP과 PACAP 수용체의 유전자 발현양상과 신호 전달경로를 규명하고자 하였다. 재료 및 방법: 미성숙 흰쥐의 배란전 난포를 체외 배양하면서 LH로 처리하고 PACAP 및 PACAP수용체의 유전자 발현을 보기 위해서는 Northern blot 분석과 in situ hybridization (ISH)을, 그리고 단백질 수준의 PACAP 검색을 위해서는 enzyme linked immunosorbent assay (ELISA) 분석을 이용하였다. 결 과: LH 처리 후 Northern blot상의 PACAP 유전자 발현은 6~9시간에 일시적으로 최고치에 도달하였으며 ISH로 보아 과립막 세포에서 발현됨을 알 수 있었다. ELISA 분석 상 PACAP 단백질도 LH처리 후 6~12시간에 최고치를 나타내었으며, PACAP 수용체 mRNA 역시 3~9시간에 최고치로 과립막 세포에서 발현되었다. Adenylate cyclase (AC) 억제제인 MDL12330A 처리시 LH로 발현된 PACAP mRNA가 감소되며, AC의 활성제인 forskolin 처리에는 LH시와 유사한 PACAP mRNA의 발현양상을 나타내었다. 그러나 protein kinase C (PKC)의 억제제인 chelerythrine과 2-0-tetradecanolphorbol-13-acetate (TPA) 처리로는 PACAP 의 유전자 발현에 영향을 주지 못하였다. 5-lipoxygenase의 억제제인 MK886이나 nordihydroguaiaretic acid (NDGA)로 처리한 결과 LH로 유도된 PACAP 유전자의 발현이 감소되었으나, cyclooxygenase의 억제제인 indomethacin은 별로 영향을 주지 못하였다. MEK와 p38의 억제제인 PD98059와 SB203580도 LH로 촉진 된 PACAP의 유전자 발현을 농도 의존적으로 억제하였다. 결 론 : 배란전 난포에서 PACAP과 PACAP 수용체의 유전자 발현은 모두 LH의 폭발적 분비에 의해 유도되어 일시적으로 과립막 세포에서 나타나 배란을 위한 국소적인 조절 작용을 할 것으로 추정되며, LH로 촉진된 PACAP 유전자 발현을 위한 신호전달은 cAMP-PKA, lipoxygenase 및 MAP kinase 경로를 통하는 것으로 사료된다.

키워드

과제정보

연구 과제 주관 기관 : 전남대학교병원

참고문헌

  1. DiZerga GS, Hodgen GD. Folliculogenesis in the ovarian cycles. Endocr Rev 1981; 2: 27-49 https://doi.org/10.1210/edrv-2-1-27
  2. Bogovich K, Richards JS, Reichert LE. Obligatory role of LH in the initiation of preovulatory follicular growth in the pregnant rat: effects of heG and FSH on LH receptors and steroidogenesis in theca, granulosa and luteal cells. Endocrinology 1981; 109: 860 -7 https://doi.org/10.1210/endo-109-3-860
  3. Hirshfield AN. Granulosa cell proliferation in very small follicles of cycling rats studied by long-term continuous tritiated thymidine infusion. BioI Reprod 1989; 41: 309-16 https://doi.org/10.1095/biolreprod41.2.309
  4. Sirois J, Simmons DL, Richards JS. Hormonal regulation of messenger ribonucleic acid encoding a novel isoform of prostaglandin endoperoxide H synthase in rat preovulatory follicles. J BioI Chem 1992; 267: 11586-92
  5. Weigel PH, Hascall VC, Tarnmi M. Hyaluronan synthase. J BioI Chern 1997; 272: 13997-4000 https://doi.org/10.1074/jbc.272.22.13997
  6. Yoshioka S, Ochsner S, Russell DL, Ujioka T, Fujii S, Richards JS, et al. Expression of tumor necrosis factor-stimulated gene-6 in the rat ovary in response to an ovulatory dose of gonadotropin. Endocrinology 2000; 141: 4114-9 https://doi.org/10.1210/en.141.11.4114
  7. Lee J, Park HJ, Choi HS, Kwon HB, Arimura A, Lee BJ, et al. Gonadotropin stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) messenger ribonucleic acid in the rat ovary and the role of PACAP as a follicle survival factor. Endocrinology 1999; 140: 818-26 https://doi.org/10.1210/en.140.2.818
  8. Richards JS. Hormonal control of gene expression in the ovary. Endocr Rev 1994; 15: 725-51
  9. White R, Leonardsson G, Rosewell I, Ann Jacobs M, Milligan S, Paker M. The nuclear receptor corepressor nripl (RlPI40) is essential for female fertility. Nat Med 2000; 6: 1368-74 https://doi.org/10.1038/82183
  10. Sharma CS, Richards JS. Regulation of API (Junl Fos) factor expression and activation in ovarian granulosa cell: relation of JunD and Fra2 to terminal differentiation. J BioI Chem 2000; 275: 33718-28 https://doi.org/10.1074/jbc.M003555200
  11. Morham SG, Langenbach R, Loftin CD, Tiano HF, Vouloumanos N, Jennette JC, et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995; 83: 473-82 https://doi.org/10.1016/0092-8674(95)90125-6
  12. Davis BJ, Lennard DE, Lee CA, Tiano HF, Morham SG, Wetsel WC, et al. Anovulation in CYclOOXYgenase-2-deficient mice is restored by prostaglandin E2 and interleukin-Ip. Endocrinology 1999; 140: 2685-95 https://doi.org/10.1210/en.140.6.2685
  13. Richards JS, Russell DL, Ochsner S, Hieh M, Doyle KH, Falender AB, et al. Novel signaling pathways that control ovarian follicular development, ovulation and luteinization. Recent Prog Horm Res 2000; 57: 195-220 https://doi.org/10.1210/rp.57.1.195
  14. Richards JS, Russell DL, Ochsner S, Espey LL. Ovulation: New dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 2002; 64: 69-92 https://doi.org/10.1146/annurev.physiol.64.081501.131029
  15. MiyataA, ArimuraA, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residuehypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989; 164: 567-74 https://doi.org/10.1016/0006-291X(89)91757-9
  16. Arimura A, Shioda S. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol 1995; 16: 53-88 https://doi.org/10.1006/frne.1995.1003
  17. Zhong y, Kasson BG. Pituitary adenyl ate cyclaseactivating polypeptide stimulates steroidogenesis and adenosine 39,59-monophosphate accumulation in cultured rat granulosa cells. Endocrinology 1994; 135:207-13 https://doi.org/10.1210/en.135.1.207
  18. Heindel JJ, Sneeden J, Powell CJ, Davis B, Culler MD. A novel hypothalamic peptide, pituitary adenylate cyclase-activating peptide, regulates the function of rat granulosa cells in vitro. BioI Reprod 1996; 54: 523-30 https://doi.org/10.1095/biolreprod54.3.523
  19. Apa R, Lanzone A, Mastrandrea M, Miceli F, de Feo D, Caruso A, et al. Control of human luteal steroidogenesis: role of growth hormonereleasing hormone, vasoacti ve intestinal peptide, and pituitary adenylate cyclase-activating peptide. Fertil Steril 1997a;68: 1097-102 https://doi.org/10.1016/S0015-0282(97)00370-1
  20. Apa R, Lanzone A, Mastrandrea M, Miceli F, Macchione E, Fulghesu A, et al. Effect of pituitary adenylate cyclase-activating peptide on meiotic maturation in follicle-enclosed, cumulus enclosed, and denuded rat oocytes. BioI Reprod 1997b; 57: 1074 -9 https://doi.org/10.1095/biolreprod57.5.1074
  21. Kotani E, Usuki S, Kubo K. Effect of pituitary aden-ylate cyclase-activating polypeptide (PACAP) on progestin biosynthesis in cultured granulosa cells from the rat ovary and expression of mRNA encoding PACAP type IA receptor. J Reprod Fertil 1998; 112: 107-14 https://doi.org/10.1530/jrf.0.1120107
  22. Gras S, Hannibal J, Georg B, Fahemkrug J. Transient periovulatory expression of pituitary adeny1ate cyclase-activating polypeptide in rat ovarian cells. Endocrinology 1996; 137: 4779-85 https://doi.org/10.1210/en.137.11.4779
  23. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP-38). Biochem Biophys Res Commun 1990; 170: 643-8. https://doi.org/10.1016/0006-291X(90)92140-U
  24. Shioda S, Legradi G, Leung WC, Nakajo S, Nakaya K, Arimura A. Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology 1994; 135: 818-25 https://doi.org/10.1210/en.135.3.818
  25. Kononen J, Paavola M, Penttila TL, Parvinen M, Pelto-Huikko M. Stage-specific expression of pituitary adenylate cyclase-activating polypeptide (PACAP) mRNA in the rat seminiferous tubules. Endocrinology 1994; 135: 2291-4 https://doi.org/10.1210/en.135.5.2291
  26. Hannibal J, Fahrenkrug J. Expression of pituitary adenylate cyclase activating polypeptide (PACAP) gene by rat spermatogenic cells. Regul Pept 1995; 55: 111-5 https://doi.org/10.1016/0167-0115(94)00110-J
  27. Hannibal J, Fahrenkrug J. PACAP innervation of the rat reproductive tract and the associated paracervical ganglia: effect of capsaicin. Neuroscience 1996; 73: 1049-60 https://doi.org/10.1016/S0306-4522(96)00547-7
  28. Hannibal J, Mikkelsen JD, Fahrenkrug J, Larsen Pl. Pituitary adeny late cyclase-activating peptide gene expression in corticotropin-releasing factorcontaining parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or restraint stress. Endocrinology 1995; 136: 4116-24 https://doi.org/10.1210/en.136.9.4116
  29. Wong WYL, DeWitt DL, Smith WL, Richards JS. Rapid induction of prostaglandin endoperoxide synthase in rat preovulatory follicles by luteinizing hormone and cAMP is blocked by inhibitors of transcription and translation. Mol Endocrinol 1989; 3: 1714-23 https://doi.org/10.1210/mend-3-11-1714
  30. Richards JS, Hedin L. Some molecular aspects of follicular development, ovulation and luteinization. Annu Rev Physiol 1987; 50: 65-7 https://doi.org/10.1146/annurev.ph.50.030188.000433
  31. Means AJ, Cruzalegui F, LeMagueresse B, Needleman DS, Slaughter GR, Ono T. A novel Ca++/ calmodulin dependent protein kinase and a male germ cell-specific calmodulin binding protein are derived from the same gene. Mol Cell BioI 1991; 11 : 3960-71
  32. Hosoya M, Kimura C, Ogi K, Ohkubo S, Miyamoto Y, Kugoh H, et al. Structure of the human pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Biochim Biophys Acta 1992; 1129: 199-206 https://doi.org/10.1016/0167-4781(92)90488-L
  33. Seger R, Hanoch T, Rosenberg R, Dantes A, Merz WE, Strauss JF, et al. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J BioI Chem 2001; 276: 13957-64
  34. Su YQ, Wigglesworth K, Pendola FL, Obrien MJ, Eppig JJ. Mitogen- activated protein kinase activity in cumulus cells is essential for gonadotropininduced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology 2002; 143: 2221-32. https://doi.org/10.1210/en.143.6.2221
  35. Kurusu S, Motegi S, Kawarninarni M, Hashimoto I. Expression and cellular distribution of cytosolic phospholipase A2 in the rat ovary. Prostaglandins Leukot Essent Fatty Acids 1998; 58: 399-404 https://doi.org/10.1016/S0952-3278(98)90160-0
  36. Ham DW, McGuire JL, Carraher RP, Demers LM. Influence of ovarian steroids on prostaglandin and leukotriene-induced uterine contraction. Am J Obestet Gynecol 1985; 153: 87-91
  37. Mikuni M, Yoshida M, Hellberg P, Peterson CA, Edwin SS, Brannstrom M, et al. The lipoxygenase inhibitor, nordihydroguaiaretic acid, inhibits ovulation and reduces leukotriene and prostaglandin levels in the rat ovary. Biol Reprod 1998; 58: 1211-6. https://doi.org/10.1095/biolreprod58.5.1211
  38. Reich RF, Kohen R, Slager A, Tsafriri A. Ovarian lipoxygenase activity and its regulation by gonadotropin in the rat. prostaglandins 1985; 30: 581-90 https://doi.org/10.1016/0090-6980(85)90022-X
  39. Espey LL, Tanaka N, Okamura H. Increase in ovarian leukotrienes during hormonally induced ovula-tion in the rat. Am J Physiol 1989; 256: 753-9
  40. Feldman E, Haberman S, Abisogun AD, Reich R, Levran D, Maschiach S, et al. Arachidonic acid metabolism in human granulosa cells: evidence for cyclooxygenase and lipoxygenase activity in vitro. Hum Reprod 1986;11: 353-6