참고문헌
- Agaisse, H., Petersen, U. M., Boutros, M., Mathey-Prevot, B. and Perrimon, N. (2003) Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev. Cell 5, 441-450 https://doi.org/10.1016/S1534-5807(03)00244-2
- Alonzi, T., Maritano, D., Gorgoni, B., Rizzuto, G., Libert, C. and Poli, V. (2001) Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol. Cell. Biol. 21, 1621-1632. https://doi.org/10.1128/MCB.21.5.1621-1632.2001
- Baumann, H. and Gauldie, J. (1994) The acute phase response. Immunol. Today 15, 74-80 https://doi.org/10.1016/0167-5699(94)90137-6
- Belvin, M. P. and Anderson, K. V. (1996) A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu. Rev. Cell Dev. BioI. 12, 393-416 https://doi.org/10.1146/annurev.cellbio.12.1.393
- Boutros, M., Agaisse, H. and Perrimon, N. (2002) Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711-722 https://doi.org/10.1016/S1534-5807(02)00325-8
- Braun, A., Hoffmann, J. A. and Meister, M. (1998) Analysis of the Drosophila host defense in domino mutant larvae, which are devoid of hemocytes. Proc. Natl. Acad. Sci. USA 95, 14337-14342 https://doi.org/10.1073/pnas.95.24.14337
- Brennan, C. A. and Anderson, K. V. (2004) Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457-483 https://doi.org/10.1146/annurev.immunol.22.012703.104626
- Bulet, P., Hctru, C, Dimarcq, J. L. and Hoffmann, D. (1999) Antimicrobial peptides in insects; structnre and function. Dev. Compo Immunol. 23, 329-344 https://doi.org/10.1016/S0145-305X(99)00015-4
- Chang, L. and Karin, M. (2001) Mammalian MAP kinase signaling cascades. Nature 410, 37-40 https://doi.org/10.1038/35065000
- Choe, K. M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K. V. (2002) Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359-362 https://doi.org/10.1126/science.1070216
- De Smaele, E., Zazzeroni, F., Papa, S., Nguyen, D. U., Jin, R., Jones, J., Cong, R. and Franzoso, G. (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signaling. Nature 414, 308-313 https://doi.org/10.1038/35104560
- Engstrom, Y., Kadalayil, L., Sun, S. C, Samakovlis, C., Hultmark, D. and Faye, I. (1993) kappa B-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327-333 https://doi.org/10.1006/jmbi.1993.1392
- Ferrandon, D., Jung, A. C, Criqui, M., Lemaitre, B., UttenweilerJoseph, S., Michaut, L., Reichhart, J. and Hoffmann, J. A. (1998) A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217-1227 https://doi.org/10.1093/emboj/17.5.1217
- Fossett, N., Tevosian, S. G., Gajewski, K, Zhang, Q., Orkin, S. H. and Schulz, R. A. (2001) The Friend of GATA proteins Ushaped, FOG-I, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc. Natl. Acad. Sci. USA 98, 7342-7347 https://doi.org/10.1073/pnas.131215798
- Franc, N. C, Heitzler, P., Ezekowitz, R. A. and White, K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284, 1991-1994 https://doi.org/10.1126/science.284.5422.1991
- Georgel, P., Naitza, S., Kappler, C., Ferrandon, D., Zachary, D., Swimmer, C., Kopczynski, C., Duyk, G., Reichhart, J. M. and Hoffmann, J. A. (2001) Drosophila immune deficiency (IMD) is a death domain protein that activates antibacterial defense and can promote apoptosis. Dev. Cell 1, 503-514 https://doi.org/10.1016/S1534-5807(01)00059-4
- Glise, B., Bourbon, H. and Noselli, S. (1995) hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell 83, 451-461 https://doi.org/10.1016/0092-8674(95)90123-X
- Goberdhan, D. C. and Wilson, C. (1998) JNK, cytoskeletal regulator and stress response kinase? A Drosophila perspective. Bioessays 20, 1009-1019 https://doi.org/10.1002/(SICI)1521-1878(199812)20:12<1009::AID-BIES7>3.0.CO;2-D
- Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J. A, Ferrandon, D. and Royet, J. (2002) The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640-644 https://doi.org/10.1038/nature734
- Hartenstein, V. and Jan, Y. N. (1992) Stndying Drosophila embryogenesis with P-lacZ enhancer trap lines. Rouxs Arch.Dev. BioI. 201, 194-220 https://doi.org/10.1007/BF00188752
- Hibi, M., Lin, A, Smeal, T., Minden, A. and Karin, M. (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7, 2135-2148 https://doi.org/10.1101/gad.7.11.2135
- Hoffmann, J. A. (2003) The immune response of Drosophila. Nature 426, 33-38 https://doi.org/10.1038/nature02021
- Hoffmann, J. A and Reichhart, J. M. (2002) Drosophila innate immunity: an evolutionary perspective. Nature Immunol. 3, 121-126 https://doi.org/10.1038/ni0202-121
- Hu, S. and Yang, X. (2000) dFADD, a novel death domaincontaining adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275, 30761-30764 https://doi.org/10.1074/jbc.C000341200
- Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19 https://doi.org/10.1016/S0952-7915(02)00005-5
- Imler, J. L. and Hoffmann, J. A. (2002) Toll receptors in Drosophila: a family of molecules regulating development and immunity. Curr. Top Microbiol. Immunol. 270, 63-79
- Ip, Y. T., Reach, M., Engstrom, Y., Kadalayil, L., Cai, H., Gonzalez-Crespo, S., Tatei, K. and Levine, M. (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753-763 https://doi.org/10.1016/0092-8674(93)90495-C
- Janeway, C. A. Jr. (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp. Quant. Biol. 54, 1-13
- Janeway, C. A. Jr. and Medzhitov, R. (2002) Innate immune recognition. Annu. Rev. Immunol. 20, 197-216 https://doi.org/10.1146/annurev.immunol.20.083001.084359
- Kang, D., Liu, G., Lundstrom, A, Gelius, E. and Steiner, H. (1998) A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Nail. Acad. Sci. USA 95, 10078-10082 https://doi.org/10.1073/pnas.95.1.78
- Kappler, C., Meister, M., Lagueux, M., Gateff, E., Hoffmann, J. A. and Reichhart, J. M. (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteriachallenged Drosophila. EMBO J 12, 1561-1568
- Kim, T., Yoon, J., Cho, H., Lee, W. B., Kim, J., Song, Y. H., Kim, S. N., Yoon, J. H., Kim-Ha, J. and Kim, Y. J. (2005) Downregulation of lipopolysaccharide response in drosophila by negative crosstalk between the API and NF-kappaB signaling modules. Nature Immunol. 6, 211-218 https://doi.org/10.1038/ni1159
- Kim, Y. S., Ryu, J. H., Han, S. J., Choi, K. H., Nam, K. B., Jang, I. H., Lemaitre, B., Brey, P. T. and Lee, W. J. (2000) Gramnegative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1,3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J Biol. Chem. 275, 32721-32727 https://doi.org/10.1074/jbc.M003934200
- Kimbrell, D. A. and Beutler, B. (2001) The evolution and genetics of innate immunity. Nat. Rev. Genet. 2, 256-267 https://doi.org/10.1038/35066006
- Lagueux, M., Perrodou, E., Levashina, E. A, Capovilla, M. and Hoffmann, J. A. (2000) Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. USA 97, 11427-11432 https://doi.org/10.1073/pnas.97.21.11427
- Lanot, R., Zachary, D., Holder, F. and Meister, M. (2001) Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257 https://doi.org/10.1006/dbio.2000.0123
- Lebestky, T., Chang, T., Hartenstein, V. and Banerjee, U. (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146-149 https://doi.org/10.1126/science.288.5463.146
- Lee, W. J., Lee, J. D., Kravchenko, V. V., Ulevitch, R. J. and Brey, P. T. (1996) Purification and molecular cloning of an inducible gram-negative bacteria-binding protein from the silkworm, Bombyx mori. Proc. Nail. Acad. Sci. USA 93, 7888-7893 https://doi.org/10.1073/pnas.93.15.7888
- Lemaitre, B., Kromer-Metzger, E., Michaut, L., Nicolas, E., Meister, M., Georgel, P., Reichhart, J. M., and Hoffmann, J. A (1995) A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. NatI. Acad. Sci. USA 92, 9465-9469 https://doi.org/10.1073/pnas.92.21.9465
- Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. and Hoffmann, J. A (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 https://doi.org/10.1016/S0092-8674(00)80172-5
- Leulier, F., Parquet, C, Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunol. 4, 478-484 https://doi.org/10.1038/ni922
- Leulier, F., Vidal, S., Saigo, K, Ueda, R. and Lemaitre, B. (2002) Inducible expression of double-stranded RNA reveals a role for dFADD in the regnlation of the antibacterial response in Drosophila adults. Curr. Biol. 12, 996-1000 https://doi.org/10.1016/S0960-9822(02)00873-4
- Levashina, E. A., Langley, E., Green, C, Gubb, D., Ashburner, M., Hoffmann, J. A. and Reichhart, J. M. (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917-1919 https://doi.org/10.1126/science.285.5435.1917
- Lin, A. (2003) Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25, 17-24 https://doi.org/10.1002/bies.10204
- Lu, Y., Wu, L. P. and Anderson, K. V. (2001) The antibacterial arm of the drosophila innate immune response requires an IkappaB kinase. Genes Dev. 15, 104-110. https://doi.org/10.1101/gad.856901
- Medzhitov, R. and Janeway, C. Jr. (2000) Innate immunity. N. EngI. J. Med. 343, 338-344 https://doi.org/10.1056/NEJM200008033430506
- Meister, M., Hctru, C. and Hoffmann, J. A. (2000) The antimicrobial host defense of Drosophila. Curr. Top. Microbiol. Immunol. 248, 17-36
- Meng, X, Khanuja, B.S. and Ip, Y.T. (1999) Toll receptormediated Drosophila immune response requires Dif, an NFkappaB factor. Genes Dev. 13, 792-797 https://doi.org/10.1101/gad.13.7.792
- Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756-759 https://doi.org/10.1038/414756a
- Morisato, D. and Anderson, K. V. (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet. 29, 371-399 https://doi.org/10.1146/annurev.genet.29.1.371
- Nicolas, E., Reichhart, J. M., Hoffmann, J. A. and Lemaitre, B. (1998) In vivo regnlation of the IkappaB homologne cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463-10469 https://doi.org/10.1074/jbc.273.17.10463
- ONeill, L. A. and Greene, C. (1998) Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. J. Leukoc. Biol. 63, 650-657
- Ochiai, M. and Ashida, M. (2000) A pattern-recognition protein for beta-1,3-glucan. The binding domain and the eDNA cloning of beta-1,3-glucan recognition protein from the silkworm, Bombyx mori. J. BioI. Chem. 275, 4995-5002 https://doi.org/10.1074/jbc.275.7.4995
- Park, J. M., Brady, H., Ruocco, M. G., Sun, H., Williams, D., Lee, S. J., Kato, T. Jr., Richards, N., Chan, K, Mercurio, F., Karin, M. and Wasserman, S. A. (2004) Targeting of TAK1 by the NF-kappa B protein Relish regnlates the JNK-mediated immune response in Drosophila. Genes Dev. 18, 584-594 https://doi.org/10.1101/gad.1168104
- Ramet, M., Lanot, R., Zachary, D. and Manfruelli, P. (2002) JNK signaling pathway is required for efficient wound healing in Drosophila. Dev. Biol 241, 145-156 https://doi.org/10.1006/dbio.2001.0502
- Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. and Ezekowitz, R. A. (2002) Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644-648 https://doi.org/10.1038/nature735
- Rizki, T. M. and Rizki, R. M. (1984) The cellular defense system of Drosophila melanogaster; in Insect Ultrastructure, King, R. C. and Akai, H. H. (eds.), pp. 579-604, Plenum, New York, USA
- Rizki, R. M. and Rizki, T. M. (1984) Selective destruction of a host blood cell type by a parasitoid wasp. Proc. Nail. Acad. Sci. USA 81, 6154-6158 https://doi.org/10.1073/pnas.81.19.6154
- Rugendorff, A., Younossi-Hartenstein, A. and Hartenstein, V. (1994) Embryonic orgin and differentiation of the Drosophila heart. Rouxs Arch. Dev. Biol 203, 266-280 https://doi.org/10.1007/BF00360522
- Rutschmann, S., Jung, A. C., Zhou, R., Silverman, N., Hoffmann, J. A. and Ferrandon, D. (2000) Role of Drosophila IKK gamma in a toll-independent antibacterial immune response. Nature Immunol. 1, 342-347 https://doi.org/10.1038/79801
- Schneider, D. S., Hudson, K. L., Lin, T. Y. and Anderson, K. V. (1991) Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsalventral polarity in the Drosophila embryo. Genes Dev. 5, 797-807 https://doi.org/10.1101/gad.5.5.797
- Silverman, N., Zhou, R., Stoven, S., Pandey, N., Hultmark, D. and Maniatis, T. (2000) A Drosophila IkappaB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461-247 https://doi.org/10.1101/gad.817800
- Sluss, H. K, Han, Z., Barrett, T., Davis, R. J. and Ip, Y. T. (1996) A JNK signal transduction pathway that mediates morphogenesis and an immune response in Drosophila. Genes Dev. 10, 2745-2758 https://doi.org/10.1101/gad.10.21.2745
- Soderhall, K and Cerenius, L. (1998) Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10, 23-28 https://doi.org/10.1016/S0952-7915(98)80026-5
- St. Johnston, D. and Nusslein-Volhard, C. (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201-219 https://doi.org/10.1016/0092-8674(92)90466-P
- Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. and Hultmark, D. (2000) Activation of the Drosophila NF-kappaB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347-352 https://doi.org/10.1093/embo-reports/kvd072
- Stoven, S., Silverman, N., Junell, A., Hedengren-Olcott, M., Erturk, D., Engstrom, Y., Maniatis, T. and Hultmark, D. (2003) Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc. Natl. Acad. Sci. USA 100, 5991-5996 https://doi.org/10.1073/pnas.1035902100
- Stronach, B. E. and Perrimon, N. (1999) Stress signaling in Drosophila. Oncogene 18, 6172-6182 https://doi.org/10.1038/sj.onc.1203125
- Takehana, A, Katsuyama, T., Yano, T., Oshima, Y., Takada, H., Aigaki, T. and Kurata, S. (2002) Overexpression of a patternrecognition receptor, peptidoglycan-recognition protein-LE, activates imdJrelish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99, 13705-13710 https://doi.org/10.1073/pnas.212301199
- Tang, G., Minemoto, Y., Dibling, B., Purcell, N. H., Li, Z., Karin, M. and Lin, A. (2001) Inhibition of JNK activation through NF-kappaB target genes. Nature 414, 313-317 https://doi.org/10.1038/35104568
- Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A and Imler, J. L. (2002) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature immunol. 3, 91-97 https://doi.org/10.1038/ni747
- Tepass, U, Fessler, L. I., Aziz, A and Hartenstein, V. (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 1829-1837
- Tzou, P., De Gregorio, E. and Lemaitre, B. (2002) How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110 https://doi.org/10.1016/S1369-5274(02)00294-1
- Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J. M., Lemaitre, B., Hoffmann, J. A and Imler, J. L. (2000) Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737-748 https://doi.org/10.1016/S1074-7613(00)00072-8
- Ventura, J. J., Kennedy, N. J., Flavell, R. A and Davis, R. J. (2004) JNK regulates autocrine expression of TGF-beta1. Mol. Cell 15, 269-278 https://doi.org/10.1016/j.molcel.2004.06.007
- Verheij, M., Bose, R., Lin, X. H., Yao, B., Jarvis, W. D., Grant, S., Birrer, M. J., Szabo, E., Zon, L. I., Kyriakis, J. M., Haimovitz-Friedman, A, Fuks, Z. and Kolesnick, R. N. (1996) Requirement for ceramide-initiated SAPKlJNK signalling in stress-induced apoptosis. Nature 380, 75-79 https://doi.org/10.1038/380075a0
- Vidal, S., Khush, R. S., Leulier, F., Tzou, P., Nakamura, M. and Lemaitre, B. (2001) Mutations in the Drosophila dTAKl gene reveal a conserved function for MAPKKKs in the control of rel/NFkappaB-dependent innate immune responses. Genes Dev. 15, 1900-1912 https://doi.org/10.1101/gad.203301
- Wasserman, S. A. (1993) A conserved signal transduction pathway regulating the activity of the rel-like proteins dorsal and NFkappa B. Mol. Biol. Cell 4, 767-77l https://doi.org/10.1091/mbc.4.8.767
- Wasserman, S. A. (2000) Toll signaling: the enigma variations. Curr. Opin. Genet. Dev. 10, 497-502 https://doi.org/10.1016/S0959-437X(00)00118-0
- Weber, A. N., Tauszig-Delamasure, S., Hoffmann, J. A, Lelievre, E., Gascan, H., Ray, K. P., Morse, M. A., Imler, J. L. and Gay, N. J. (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nature Immunol. 4, 794-800 https://doi.org/10.1038/ni955
- Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H. and Hultmark, D. (2000) A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 13772-13777 https://doi.org/10.1073/pnas.97.25.13772
피인용 문헌
- Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing vol.39, pp.2, 2012, https://doi.org/10.1007/s11033-011-0939-3
- The Insect Microbiome Modulates Vector Competence for Arboviruses vol.6, pp.11, 2014, https://doi.org/10.3390/v6114294
- A comprehensive analysis of the Manduca sexta immunotranscriptome vol.39, pp.4, 2013, https://doi.org/10.1016/j.dci.2012.10.004
- Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica) vol.12, pp.11, 2013, https://doi.org/10.1021/pr400519d
- The mosquito microbiota influences vector competence for human pathogens vol.3, 2014, https://doi.org/10.1016/j.cois.2014.07.004
- Hundreds of putatively functional small open reading frames in Drosophila vol.12, pp.11, 2011, https://doi.org/10.1186/gb-2011-12-11-r118
- Knock-down of REL2, but not defensin A, augments Aedes aegypti susceptibility to Bacillus subtilis and Escherichia coli vol.113, pp.2, 2010, https://doi.org/10.1016/j.actatropica.2009.10.013
- Characterization of an immune deficiency homolog (IMD) in shrimp (Fenneropenaeus chinensis) and crayfish (Procambarus clarkii) vol.41, pp.4, 2013, https://doi.org/10.1016/j.dci.2013.07.004
- Regulators and signalling in insect haemocyte immunity vol.21, pp.2, 2009, https://doi.org/10.1016/j.cellsig.2008.08.014
- Development of diet-induced insulin resistance in adult Drosophila melanogaster vol.1822, pp.8, 2012, https://doi.org/10.1016/j.bbadis.2012.04.012
- Identification of a C-type lectin with antiviral and antibacterial activity from pacific white shrimp Litopenaeus vannamei vol.46, pp.2, 2014, https://doi.org/10.1016/j.dci.2014.04.014
- Exploring the physiology and pathology of aging in the intestine ofDrosophila melanogaster vol.59, pp.sup1, 2015, https://doi.org/10.1080/07924259.2014.963713
- A Drosophila Model to Image Phagosome Maturation vol.2, pp.2, 2013, https://doi.org/10.3390/cells2020188
- Validation of Aedes aegypti Aag-2 cells as a model for insect immune studies vol.5, pp.1, 2012, https://doi.org/10.1186/1756-3305-5-148
- Rhodnius prolixus: Identification of immune-related genes up-regulated in response to pathogens and parasites using suppressive subtractive hybridization vol.31, pp.2, 2007, https://doi.org/10.1016/j.dci.2006.05.008
- Evolutionary rate patterns of genes involved in the Drosophila Toll and Imd signaling pathway vol.13, pp.1, 2013, https://doi.org/10.1186/1471-2148-13-245
- The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania vol.9, pp.1, 2016, https://doi.org/10.1186/s13071-016-1507-4
- Role of NF-kβ factor Rel2 during Plasmodium falciparum and bacterial infection in Anopheles dirus vol.9, pp.1, 2016, https://doi.org/10.1186/s13071-016-1810-0
- Prominent down-regulation of storage protein genes after bacterial challenge in eri-silkworm,Samia cynthia ricini vol.67, pp.1, 2008, https://doi.org/10.1002/arch.20214
- Social management of LPS-induced inflammation in Formica polyctena ants vol.22, pp.6, 2008, https://doi.org/10.1016/j.bbi.2008.01.010
- A common theme in extracellular fluids of beetles: extracellular superoxide dismutases crucial for balancing ROS in response to microbial challenge vol.6, pp.1, 2016, https://doi.org/10.1038/srep24082
- Toll pathway modulates TNF-induced JNK-dependent cell death inDrosophila vol.5, pp.7, 2015, https://doi.org/10.1098/rsob.140171
- Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance inDrosophilalarvae vol.6, pp.4, 2016, https://doi.org/10.1098/rsob.150231
- Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers vol.6, pp.1, 2008, https://doi.org/10.1186/1741-7007-6-50
- Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity vol.8, pp.1, 2010, https://doi.org/10.1186/1479-5876-8-6