Effects of Pine Needle Extract on Pacemaker Currents in Interstitial Cells of Cajal from the Murine Small Intestine

  • Cheong, Hyeonsook (Department of Genetic Science, College of Natural Science, Chosun University) ;
  • Paudyal, Dilli Parasad (Department of Genetic Science, College of Natural Science, Chosun University) ;
  • Jun, Jae Yeoul (Department of Physiology, College of Medicine, Chosun University) ;
  • Yeum, Cheol Ho (Department of Physiology, College of Medicine, Chosun University) ;
  • Yoon, Pyung Jin (Department of Physiology, College of Medicine, Chosun University) ;
  • Park, Chan Guk (Department of Internal Medicine, College of Medicine, Chosun University) ;
  • Kim, Man Yoo (Department of Internal Medicine, College of Medicine, Chosun University) ;
  • So, Insuk (Department of Physiology and Biophysics, College of Medicine, Seoul National University) ;
  • Kim, Ki Whan (Department of Physiology and Biophysics, College of Medicine, Seoul National University) ;
  • Choi, Seok (Department of Physiology, College of Medicine, Chosun University)
  • Received : 2005.05.16
  • Accepted : 2005.07.01
  • Published : 2005.10.31

Abstract

Extracts of pine needles (Pinus densiflora Sieb. et Zucc.) have diverse physiological and pharmacological actions. In this study we show that pine needle extract alters pacemaker currents in interstitial cells of Cajal (ICC) by modulating ATP-sensitive $K^+$ channels and that this effect is mediated by prostaglandins. In whole cell patches at $30^{\circ}C$, ICC generated spontaneous pacemaker potentials in the current clamp mode (I = 0), and inward currents (pacemaker currents) in the voltage clamp mode at a holding potential of -70 mV. Pine needle extract hyperpolarized the membrane potential, and in voltage clamp mode decreased both the frequency and amplitude of the pacemaker currents, and increased the resting currents in the outward direction. It also inhibited the pacemaker currents in a dose-dependent manner. Because the effects of pine needle extract on pacemaker currents were the same as those of pinacidil (an ATP-sensitive $K^+$ channel opener) we tested the effect of glibenclamide (an ATP-sensitive $K^+$ channels blocker) on ICC exposed to pine needle extract. The effects of pine needle extract on pacemaker currents were blocked by glibenclamide. To see whether production of prostaglandins (PGs) is involved in the inhibitory effect of pine needle extract on pacemaker currents, we tested the effects of naproxen, a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and AH6809, a prostaglandin EP1 and EP2 receptor antagonist. Naproxen and AH6809 blocked the inhibitory effects of pine needle extract on ICC. These results indicate that pine needle extract inhibits the pacemaker currents of ICC by activating ATP-sensitive $K^+$ channels via the production of PGs.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Bray, K. and Quast, U. (1992) Differential inhibition by tedisamil (KC 8857) and glibenclamide of the responses to cromakalim and minoxidil sulphate in rat isolated aorta. Naunyn Schmiedebergs Arch. Pharmacol. 345, 244-250 https://doi.org/10.1007/BF00165744
  2. Choi, E. J., Lee, E., Rhim, T. J., Cha, B. C., and Park, H. J. (1997) Antimicrobial activities of pine needle (Pinus densiflora Seib Zucc) extract. J. Korean Soc. Food Sci. Nutr. 25, 293-297
  3. Chung, H. J., Hwang, G. H., Yoo, M. J., and Rhee, S. J. (1996) Chemical composition of pine sprouts and pine needles for the production of pine sprout tea. Koean J. Dietary and Culture 11, 635-641
  4. Chung, Y. J., Bae, M. W., Choung, M. I., Lee, J. S., and Chung, K. S. (2002) Cytotoxic effect of the distilled pine-needle extracts on several cancer cell lines in vitro. J. Korean Soc. Food Sci. Nutr. 31, 691-695 https://doi.org/10.3746/jkfn.2002.31.4.691
  5. Edward, G. and Weston, A. H. (1993) The pharmacology of ATP-sensitive potassium channels. Annu. Rev. Pharmacol. Toxicol. 33, 597-637 https://doi.org/10.1146/annurev.pa.33.040193.003121
  6. Herschman, H. R. (1994) Regulation of prostaglandin synthase- 1 and prostaglandin synthase-2. Cancer Metastasis Rev. 13, 241-256 https://doi.org/10.1007/BF00666095
  7. Hong, W. S. (1999) The ingredients and use of medicinal herb. Ilwonseogak Co., pp. 142-144, Seoul
  8. Huizinga, J. D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelesen, H., et al. (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347-349 https://doi.org/10.1038/373347a0
  9. Ichikawa, S., Takigawa, H., and Nara, S. (1998) Effects of shoju- sen, a herbel medicine, on unidentified clinical syndrome. J. Clin. Pharmacol. New Drugs 47, 879-887
  10. Jun, J. Y., Choi, S., Chang, I. Y., Yoon, C. K., Jeong, H. G., et al. (2005) Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent $K^+$ channels through prostaglandin E2 in interstitial cells of Cajal from murine small intestine. Br. J. Pharmacol. 144, 242-251 https://doi.org/10.1038/sj.bjp.0706074
  11. Kim, E. J., Choi, K. P., Ham, S. S., and Kang, H. Y. (1998b) Inhibitory effect of pine needle extracts on the chemically induced mutagenicity. Korean J. Food Sci. Technol. 30, 450-455
  12. Kim, E. J., Jung, S. W., Choi, K. P., and Ham, S. S. (1998a) Cytotoxic effect of the pine needle extracts. Korean J. Food Sci. Technol. 30, 213-217
  13. Kim, T. W., Beckett, E. A., Hanna, R., Koh, S. D., Ordog, T., et al. (2002) Regulation of pacemaker frequency in the murine gastric antrum. J. Physiol. 538, 145-157 https://doi.org/10.1113/jphysiol.2001.012765
  14. Kitamura, K. and Kuriyama, H. (1994) Molecular mechanisms of action of antihypertensive agents. Ca-antagonists and Kchannel openers on vascular smooth muscle; in Pharmacology of Smooth Muscle, Szekeres, L. and Papp, J. G. (eds.), pp. 595-630, Springer Verlag, Berlin
  15. Kobayashi, S., Chowdhury, J. U., Tokuno, H., Nahar, S., and Iino, S. (1996) A smooth muscle nodule producing 10-12 cycles/ min regular contractions at the mesenteric border of the pacemaker area in the guinea-pig colon. Arch. Histol. Cytol. 59, 159-168 https://doi.org/10.1679/aohc.59.159
  16. Koh, S. D., Sanders, K. M., and Ward, S. M. (1998) Spontaneous electrical rhythmicity in cultured interstitial cells of Cajal from the murine small intestine. J. Physiol. 513, 203-213 https://doi.org/10.1111/j.1469-7793.1998.203by.x
  17. Kong, Z., Liu, Z., and Ding, B. (1995) Study on antimutagenic effect of pine needle extract. Mutat. Res. 347, 101-104 https://doi.org/10.1016/0165-7992(95)00026-7
  18. Lee, E. (2003) Effects of powdered pine neele (Pinus densiflora seib et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat. J. Korean Soc. Food Sci. Nutr. 32, 926-930 https://doi.org/10.3746/jkfn.2003.32.6.926
  19. Moon, J. J., Han, Y. B., and Kim, J. S. (1993) Studies on antitumor effects of pine needles, Pinus densiflora Sieb et Zucc. Korean Vet. Res. 33, 701-710
  20. Park, C. S., Kwon, C. J., Choi, M. A., Park, G. S., and Choi, K. H. (2002) Antioxidative and nitrite scavenging activities of mugwort and pine needle extracts. Korean J. Food Pres. 9, 248-252
  21. Sanders, K. M. (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492-515 https://doi.org/10.1053/gast.1996.v111.pm8690216
  22. Sanders, K. M., Ordog, T., Koh, S. D., Torihashi, S., and Ward, S. M. (1999) Development and plasticity of interstitial cells of Cajal. Neurogastroenterol Motil. 11, 311-338 https://doi.org/10.1046/j.1365-2982.1999.00164.x
  23. Seibert, K., Zhang, Y., Leary, K., Hauser, S., Masferrer, J., et al. (1997) Distribution of COX-1 and COX-2 in normal and inflamed tissue. Adv. Exp. Med. Biol. 400A, 167-170
  24. Teramoto, N. and Brading, A. F. (1996) Activation by levcromakalim and metabolic inhibition of glibenclamide-sensitive $K^+$ channels in smooth muscle cells of pig proximal urethra. Br. J. Pharmacol. 118, 635-642 https://doi.org/10.1111/j.1476-5381.1996.tb15448.x
  25. Thomsen, L., Robinson, T. L., Lee, J. C., Farraway, L. A., Hughes, M. J., et al. (1998) Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat. Med. 4, 848-851 https://doi.org/10.1038/nm0798-848
  26. Thrupp, L. D. (1986) Susceptibility testing of antibiotics in liquid media; in Dongeubogam, Kuk Il Publishing Co., pp. 77?83, Seoul, Korea
  27. Thuneberg, L. (1982) Interstitial cells of Cajal: intestinal pacemakers? Adv. Anat. Embryol. Cell Biol. 71, 1-130
  28. Tokutomi, N., Maeda, H., Tokutomi, Y., Sato, D., Sugita, M., et al. (1995) Rhythmic Cl? currents and physiological roles of the intestinal c-kit-positive cells. Pflugers Arch. 431, 169-177 https://doi.org/10.1007/BF00410188
  29. Wakanyaku Medical Institute (1996) The clinical effects of Shoju- sen. Reports 1 and 2, Wakanyaku Medical Institute, Tokyo (in Japanese)
  30. Ward, S. M., Burns, A. J., Torihashi, S., and Sanders, K. M. (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and intestinal electrical rhythmicity in murine mutants. J. Physiol. 480, 91-97
  31. Yoon, S. U. (1997) Pine trees and natural remedy. Academy Press Inc., pp. 40-43, Seoul