리파제의 고정화 및 글리세리드 합성반응으로의 응용에 관한 연구

A Study on the Immobilization of Lipase and Its Application for the Synthesis of Glycerides

  • 정대원 (수원대학교 공과대학 신소재공학과) ;
  • 송재현 (수원대학교 공과대학 신소재공학과) ;
  • 백민정 (수원대학교 공과대학 신소재공학과)
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Song, Jhea-hyun (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Paik, Min-jung (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 투고 : 2004.08.17
  • 심사 : 2005.10.18
  • 발행 : 2005.12.10

초록

본 연구에서는 Rhizomucor miehei 유래 리파제(Rhm)를 올레인산으로 전처리한 이온교환수지에 고정화하는 방법 및 그의 응용성에 관하여 연구하였다. 수지로는 약염기성 이온교환수지인 Duolite A-568을 사용했을 때 최상의 고정화 효율(82%)을 나타냈으며, 고정화 Rhm은 물, 헥산, 클로로포름 등에는 안정하나, 에탄올 및 메탄올 등과 같은 유기용매에는 불안정하였다. 또한, 고정화 Rhm를 디글리세리드(DG)의 선택적 합성 반응에 적용한 결과, 글리세롤과 지방산의 에스테르화 반응에 있어서 DG의 함량이 80 mol%, DG 중의 1,3-DG 함량이 98% 정도로 매우 높은 선택성을 나타내었다.

In this paper, immobilization of lipase (Rhizomucor miehei, Rhm) onto ion-exchange resin pretreated with oleic acid and its application were studied. Immobilization efficiency was reached to 82% when weakly basic anion exchange resin, Duolite A-568, was used. Immobilized Rhm was stable in water, chloroform and hexane, however, unstable in alcoholic solvents. When immobilized Rhm was applied to the esterification reaction of glycerol and fatty acid, content of DG in the product mixture was ca. 80 mol% and 1,3-DG in total DG reached to 98%.

키워드

참고문헌

  1. F. X. Malcata, H. R. Reyes, H. S. Garcia, C. G. Hill, Jr., and C. H. Amundson, J. Am. Oil Chem. Soc., 67, 890 (1990) https://doi.org/10.1007/BF02541845
  2. K. Bagi, J. M. Simon, and B. Szajani, Enzyme Microb. Technol., 20, 531 (1997) https://doi.org/10.1016/S0141-0229(96)00190-1
  3. M. Murray, D. Rooney, M. V. Neikerk, A. Montenegro, and J. R. Weatherley, Process Biochem., 32, 479 (1997) https://doi.org/10.1016/S0032-9592(96)00108-2
  4. F. Kayirhan and S. S. Celebi, Biochem. Engin. J., 1, 153 (1998) https://doi.org/10.1016/S1369-703X(97)00026-0
  5. V. M. Balcao, A. J. Pavia, and F. X. Malcata, Enzyme Microb. Technol., 18, 392 (1996) https://doi.org/10.1016/0141-0229(95)00125-5
  6. Y. Okahata and K. Ijiro, Bull. Chem. Soc. Jpn., 65, 2411 (1992) https://doi.org/10.1246/bcsj.65.2411
  7. US Patent 6,284,375 (2001)
  8. Y. Okahata, K Niikura, and K. Ijiro, J. Chem. Soc. Perkin Trans., 1, 919 (1995)
  9. Y. Okahata and T. Mori, J. Chem. Soc. Perkin Trans., 1, 2861 (1996)
  10. US Patent 5,128,251 (1992)
  11. US Patent 5,156,963 (1992)
  12. J. Zalacain, M. J. Zapelena, M. Pena, J. Astiasaran, and J. Bello, Meat Science, 45, 99 (1997) https://doi.org/10.1016/S0309-1740(96)00049-6
  13. D.-W. Chung and J.-H. Song, J. Korean lnd Eng. Chem. 14, 932 (2003)
  14. D.-W. Chung and l-h. Song, J. Korean lnd Eng. Chem. 12, 937 (2001)
  15. T. Nagao, H. Watanabe, N. Goto, K. Onizawa, H. Taguchi, N. Matsuo, T. Yasukawa, R. Tsushima, H. Shimasaki, and H. Itakura, J. Nutr., 130, 792 (2000)
  16. Japanese Patent, H4-261497 (1992)
  17. A. Heisler, C. Rabiller, and J. Hublin, Biotech. Letters, 13, 327 (1991) https://doi.org/10.1007/BF01027677
  18. Y. lsono, H. Nabetani, and M. Nakajima, J. Ferrnen. Bioeng., 80, 170 (1995)
  19. M. M. Soumanou, U. T. Bomscheuers, and R. D. Schmid, J. Am. Oil Chem. Soc., 75, 703 (1998) https://doi.org/10.1007/s11746-998-0209-2
  20. D. G. Hayes and E. Gulari, Biotech. Bioengin., 35, 793 (1990) https://doi.org/10.1002/bit.260350807
  21. Schmid, U. T. Bomscheuer, M. M. Soumanou, G. P. McNeill, and R. D. Schmid, Biotech. Bioengin., 64, 679 (1999)
  22. S. Okumura, M. Iwai, and Y. Tsujisaka, Biochirn. et Biophy. Acta, 575, 156 (1979)
  23. M. Matori, T. Asahara, and Y. Ota, J. Ferrnen. Bioeng., 72, 397 (1991)