DOI QR코드

DOI QR Code

Preliminary Proteomic Analysis of Thiobacillus ferrooxidans Growing on Elemental Sulphur and Fe2+ Separately

  • He, Zhi-guo (School of Resource Processing and Bioengineering, Central South University) ;
  • Hu, Yue-Hua (School of Resource Processing and Bioengineering, Central South University) ;
  • Zhong, Hui (Cancer Research Institute Central South University) ;
  • Hu, Wei-Xin (School of bioscience and technology, Central South University) ;
  • Xu, Jin (School of Resource Processing and Bioengineering, Central South University)
  • Published : 2005.05.31

Abstract

Thiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Thiobacillus ferrooxidans have been tested, which show lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ and from 4 to 12 days for Thiobacillus ferrooxidans cultivated with elemental sulphur. Differences of protein patterns of Thiobacillus ferrooxidans growing on elemental sulphur and $Fe^{2+}$ separately were investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ ionization (MALDI)-Mass spectrometry and ESI-MS/MS. From the 7 identified protein spots, 11 spots were found more abundant when growing on elemental sulphur. By contrast 6 protein spots were found decreased at elemental cultivation condition. Among the proteins identified, cytochrome C have been previously identified as necessary elements of electron-transfering pathway for Thiobacillus ferrooxidans to oxidize $Fe^{2+}$; ATP synthase alpha chain and beta are expressed increased when Thiobacillus ferrooxidans cultivated with $Fe^{2+}$ as energy source. ATP synthase Beta chain is the catalytic subunit, and ATP synthase alpha chain is a regulatory subunit. The function of ATPase produces ATP from ADP in the presence of a proton gradient across the membrane.

Keywords

References

  1. Amaro, A. M., Chamorro, D., Seeger, M., Arredondo, R., Peirano, I. and Jerez, C. A. (1999) Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J. Bacteriol. 173, 910-915
  2. Brierley, C. L. (1978) Bacterial leaching. Crit. Rev. Microbiol. 6, 207-262 https://doi.org/10.3109/10408417809090623
  3. Brown, L. D., Dennehy, M. E. and Rawlings, D. E. (1994) The F1 genes of the F1F0 ATP synthase from the acidophilic bacterium Thiobacillus ferrooxidans complement Escherichia coli F1 unc mutants. FEMS Microbiol Lett. 122, 19-25 https://doi.org/10.1111/j.1574-6968.1994.tb07137.x
  4. Corinne, A. A. and Abderrahmane, B. (1998) Characterization and expression of the co-transcribed cyc1 and cyc2 genes encoding the cytochrome c4(c552) and a high-molecular-mass cytochrome c from Thiobacillus ferrooxidans ATCC 33020. FEMS Microbiol. Lett. 167, 171-177
  5. Ducret, A., Van Oostveen, I., Eng, J. K., Yates, J. R. 3rd and Aebersold, R. (1998) High throughput protein characterization by automated reversephase chromatography/electrospray tandem mass spectrometry. Protein Sci. 7, 706-719 https://doi.org/10.1002/pro.5560070320
  6. Elbehti, A., Asso, M., Guigliarelli, B. and Lemesle-Meunier, D. (1997) Characterization of the three membrane bound metallo enzymes required to postulate the existence of a bc-type complex in T. ferrooxidans. Biomine. 2, 1-9
  7. Eng J. K., McCormack, A. L. and Yates, J. R. 3rd. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976-989 https://doi.org/10.1016/1044-0305(94)80016-2
  8. Figeys, D., Ducret, A., Yates, J. R. 3rd and Aebersold, R. (1996) Protein identification by solid phase microextraction-capillary zone electrophoresis-microelectrospray-tandem mass spectrometry. Nat. Biotechnol. 14, 1579-1583 https://doi.org/10.1038/nbt1196-1579
  9. Gamble, S. C., Dunn, M. J., Wheeler, C. H., Joiner, M. C., Adu- Poku, A. and Arrand, J. E. (2000) Expression of proteins coincident with inducible radioprotection in human lung epithelial cells. Cancer Res. 60, 2146-2151
  10. Giovanni, C., Maurizio, B., Luca, M., Laura, S., Gian, M., Ghiggeri, B., Carnemolla, P. O., Luciano, Z. and Pier, G. R. (2004) Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25, 1327-1333 https://doi.org/10.1002/elps.200305844
  11. Giudici-Orticoni, M.-T,. Nitschke, W., Cavazza, C. and Bruschi, M. (1997) Characterization and functional role of a cytochrome c4 involved in the iron respiratory electron transport chain of Thiobacillus ferrooxidans. Biomine. 4, 1-10
  12. Leduc, L. G. and Ferroni, G. D. (1994) The chemolithotrophic bacterium Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 14, 103-120 https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  13. Nemati, M. and Webb, C. (1996) Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Appl. Microbiol. Biotechnol. 46, 250-255 https://doi.org/10.1007/s002530050812
  14. Rojas-Chapana, J. A., Giersig, M. and Tributsch, H. (1995) Sulphur colloids as temporary energy reservoirs for Thiobacillus ferrooxidans during pyrite oxidation. Arch. Microbiol. 163, 352-356 https://doi.org/10.1007/BF00404208
  15. Rojas-Chapana, J. A., Giersig, M. and Tributsch, H. (1996) The path of sulfur during the bio-oxidation of pyrite by Thiobacillus ferooxidans. Fuel. 75, 923-930 https://doi.org/10.1016/0016-2361(96)00057-9
  16. Schippers, A., Rohwerder, T. and Sand, W. (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl. Microbiol. Biotechnol. 52, 104-110 https://doi.org/10.1007/s002530051495
  17. Tributsch, H., Rojas-Chapana, J. A., Bartels, C. C., Ennaoui, A. and Hofmann, W. (1998) Role of transient iron sulfide films in microbial corrosion of steel. Corrosion 54, 216-227 https://doi.org/10.5006/1.3284846
  18. Rawlings, D. E. and Kusano. T. (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol. Rev. 58, 39-55
  19. Tateo, Y. and Yoshihiro, F. (1995) Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 17, 401-413 https://doi.org/10.1111/j.1574-6976.1995.tb00222.x
  20. Yamanaka, T. and Fukumori, Y. (1997) Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiol. Rev. 17, 401-413 https://doi.org/10.1111/j.1574-6976.1995.tb00222.x
  21. Young, A. G., Eugene, C., Nitin, S. B., Weiguo, A. T., Min, P., Ruedi, A., David, R. G., Leroy, H. and Wailap, V. N. (2003) Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol. Cell. Proteomics 2, 506-524

Cited by

  1. In vivo proteome analysis of Xanthomonas campestris pv. campestris in the interaction with the host plant Brassica oleracea vol.281, pp.2, 2008, https://doi.org/10.1111/j.1574-6968.2008.01090.x
  2. Analysis of differential protein expression in Acidithiobacillus ferrooxidans grown under different energy resources respectively using SELDI-ProteinChip technologies vol.65, pp.1, 2006, https://doi.org/10.1016/j.mimet.2005.06.006
  3. A stoichiometric model ofAcidithiobacillus ferrooxidansATCC 23270 for metabolic flux analysis vol.102, pp.5, 2009, https://doi.org/10.1002/bit.22183
  4. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2016, https://doi.org/10.3390/min6040128
  5. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS vol.101, pp.3, 2012, https://doi.org/10.1007/s10482-011-9670-2
  6. Differential proteomic analysis of Acidithiobacillus ferrooxidans cells maintained in contact with bornite or chalcopyrite: Proteins involved with the early bacterial response vol.46, pp.3, 2011, https://doi.org/10.1016/j.procbio.2010.12.003
  7. Proteomic insights into cold adaptation of psychrotrophic and mesophilic Acidithiobacillus ferrooxidans strains vol.100, pp.2, 2011, https://doi.org/10.1007/s10482-011-9584-z
  8. Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures vol.192, pp.12, 2010, https://doi.org/10.1007/s00203-010-0629-x