The Estimated Stiffness of Rubber Pads for Railway Bridges

철도교용 고무패드의 강성 추정기법

  • Received : 2004.12.02
  • Accepted : 2005.04.07
  • Published : 2005.06.27

Abstract

This study analyzed the characteristics of four kinds of bridge rubber pads and suggested a method of determining the stiffness and the damping ratio of the pads.The stiffness of rubber pads can be estimated by a direct static test and a dynamic test indirectly.This study used both methods to determine the pad's stiffness.The damping ratio of pads can be obtained using the dynamic test and the damping ratio of polyurethane rubber pads was estimated to aproximate that of natural and chloroprene rubber pads.The polyurethane rubber pads are harder than natural and chloroprene rubber pads and thus carry larger load bearing capacity.In addition, they showed higher stiffness with the same shape factor than the others and thus are more available for bridge bearings.Although natural and chloroprene rubber pads are elongated to large deformation in the horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless of the thickness and hardness of the pads.Therefore, they do not need reinforced plate to restrict horizontal deformation.

본 연구에서는 철도교량에 교량받침으로 사용될 수 있는 4종류의 고무패드의 사용상의 특성을 분석하고, 강성과 감쇠비를 결정하기 위한 방법을 제시하였다. 고무패드의 강성을 결정하기 위해서는 정적 실험을 통한 직접적인 방법과 동적 실험을 통한 간접적인 방법이 가능하다. 본 연구에서 두 가지 방법에 의해서 고무패드의 강성을 평가하고 비교하였다. 고무패드의 감쇠비는 동적 실험에 의해서만 파악이 가능하며 폴리우레탄 고무의 경우 천연고무나 크로로프렌 고무와 유사한 감쇠비를 가지는 것으로 나타났다. 폴리우레탄 고무는 천연고무나 크로로프렌 고무에 비해 경도가 크기 때문에 작은 면적으로도 큰 하중을 견딜 수 있으며, 또한 같은 형상계수를 가지는 패드에서도 더 큰 강성을 보여 철도교의 교좌로서 활용성이 더 큰 것으로 판단되었다. 천연고무나 크로로프렌 고무 패드는 수직하중에 의한 수평 변형이 크게 발생하는데 비해, 폴리우레탄 고무패드는 수직하중에 의한 수평방향의 변형이 거의 발생하지 않기 때문에 보강재에 의한 보강이 필요하지 않다.

Keywords

References

  1. 최진유 외 (2002). 판형교의 보수보강 및 유도상화 기술개발, 한국철도기술연구원
  2. AASHTO (1996). AASHTO LRFD bridge design specifications, Washington, D.C
  3. ASTM (2001). Guide Specifications for Seismic Isolaltion Design, American Association of State Highway and Transportation Officials, Washington, D.C
  4. Burpulis J.S., Seay, J.R. and Graff, R.S. (1990). Neoprene in Bridge Bearing Pads- The Proven Performance, Extending the Life of Bridges, ASTM STP 1100, American Society for Testing and Materials, Philadelphia, pp. 32-43
  5. Chopra, A.K. (2001). Dynamics of Structures; Theory and Applications to Earthquake Engineering, The Second Edition, Prentice Hall, New Jersey, USA
  6. Harris, C.M. (1988). Shock and Vibration Handbook, The Third Edition, McGraw-Hill, Inc
  7. Heymsfield, E., McDonald, J. and Avent R.R. (2001). Neoprene Bearing Pad Slippage at Louisiana Bridges, Journal of Bridge Engineering, ASCE Vol. 6, No. 1, January/February, pp.30-36 https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(30)
  8. Nashif, A.D., Jone D.I.G. and Henderson, J.P. (1985). Vibration Damping, John Wiley & Sons
  9. Roeder, C.W. Stanton, J.F. and Taylor, A.W. (1987). Performance of elastomeric bearings, NCHRP Rep. No. 298, Transportation Research Board, Washington, D.C
  10. Stanton, J.F. and Roeder, C.W. (1985). Elastomeric bearings design, construction, and materials, NCHRP Rep. No. 248, Transportation Research Board, Washington, D.C
  11. Yazdani, N., Fellow, P.E., Eddy, S. and Chun, S. (2000). Effect of Bearing Pads on Precast Prestressed Concrete Bridges, Journal of Bridge Engineering, ASCE, Vol. 5, No. 3, August, pp.224 -232 https://doi.org/10.1061/(ASCE)1084-0702(2000)5:3(224)
  12. Wang, A., Cox, S.J., Gosling, D. and Prudhoe, J.E.W. (2000). Railway bridge noise control with resilient baseplates, Journal of Sound and Vibration, Vol. 231, No. 3, March, pp.907-911 https://doi.org/10.1006/jsvi.1999.2641