Cytokine Reporter Mouse System for Screening Novel IL12/23 p40-inducing Compounds

  • Im, Wooseok (Department of Bioscience and Biotechnology, Sejong University) ;
  • Kim, Hyojeong (Department of Bioscience and Biotechnology, Sejong University) ;
  • Yun, Daesun (Department of Bioscience and Biotechnology, Sejong University) ;
  • Seo, Sung-Yum (Department of Life Science, Kongju National University) ;
  • Park, Se-Ho (School of Biotechnology, Korea University) ;
  • Locksley, Richard M. (Howard Hughes Medical Institute and Department of Medicine and Microbiology & Immunology, University of California) ;
  • Hong, Seokmann (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2005.07.06
  • Accepted : 2005.07.13
  • Published : 2005.10.31

Abstract

Cytokines interleukin (IL) 12 and 23 play critical roles in linking innate and adaptive immune responses. They are members of heterodimeric cytokines, sharing a subunit p40. Although IL12/23 p40 is mainly induced in macrophages and dendritic cells (DCs) after stimulation with microbial Toll-like receptor ligands, methods to monitor the cells that produce IL12/23 p40 in vivo are limited. Recently, the mouse model to track p40-expressing cells with fluorescent reporter, yellow fluorescent protein, has been developed. Macrophages and DCs from these mice faithfully reported p40 induction using the fluorescent marker. Here we took advantage of these reporter mice to screen bio-compounds for p40-inducing activity. After screening hundreds of compounds, we found several extracts inducing IL12/23 p40 gene expression. Treatment of DCs with these extracts induced the expression of MHC class II and co-stimulatory molecules, which implies that these might be useful as adjuvants. Next, the in vivo target immune cells of candidate compounds were examined. The reporter system can be useful to identify cells producing IL12 or IL23 in vivo as well as in vitro. Thus, our cytokine reporter system proved to be a valuable reagent for screening for immunostimulatory molecules and identification of target cells in vivo.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Ministry of Science & Technology

References

  1. Abbas, A. K., Murphy, K. M., and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787-793 https://doi.org/10.1038/383787a0
  2. Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511 https://doi.org/10.1038/nri1391
  3. Ardavin, C., Amigorena, S., and Reis e Sousa, C. (2004) Dendritic cells: immunobiology and cancer immunotherapy. Immunity 20, 17-23 https://doi.org/10.1016/S1074-7613(03)00352-2
  4. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252 https://doi.org/10.1038/32588
  5. Banchereau, J., Fay, J., Pascual, V., and Palucka, A. K. (2003) Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Novartis. Found. Symp. 252, 226-235; discussion 235-228, 257-267
  6. Becher, B., Durell, B. G., and Noelle, R. J. (2003) IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 112, 1186-1191
  7. Blattman, J. N. and Greenberg, P. D. (2004) Cancer immunotherapy: a treatment for the masses. Science 305, 200-205 https://doi.org/10.1126/science.1100369
  8. Brasel, K., De Smedt, T., Smith, J. L., and Maliszewski, C. R. (2000) Generation of murine dendritic cells from flt3-ligandsupplemented bone marrow cultures. Blood 96, 3029-3039
  9. Colonna, M., Trinchieri, G., and Liu, Y. J. (2004) Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219-1226 https://doi.org/10.1038/ni1141
  10. Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., et al. (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748 https://doi.org/10.1038/nature01355
  11. Dalod, M., Hamilton, T., Salomon, R., Salazar-Mather, T. P., Henry, S. C., et al. (2003) Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/ beta. J. Exp. Med. 197, 885-898 https://doi.org/10.1084/jem.20021522
  12. Diamond, B. (2005) Autoimmunity. Immunol. Rev. 204, 5-8 https://doi.org/10.1111/j.0105-2896.2005.00258.x
  13. Fortier, A. H., Hoover, D. L., and Nacy, C. A. (1982) Intracellular replication of Leishmania tropica in mouse peritoneal macrophages: amastigote infection of resident cells and inflammatory exudate macrophages. Infect. Immun. 38, 1304-1308
  14. Gately, M. K., Desai, B. B., Wolitzky, A. G., Quinn, P. M., Dwyer, C. M., et al. (1991) Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J. Immunol. 147, 874-882
  15. Gilliet, M., Boonstra, A., Paturel, C., Antonenko, S., Xu, X. L., et al. (2002) The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3- ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953-958 https://doi.org/10.1084/jem.20020045
  16. Hoebe, K., Janssen, E., and Beutler, B. (2004) The interface between innate and adaptive immunity. Nat. Immunol. 5, 971-974 https://doi.org/10.1038/ni1004-971
  17. Iwasaki, A. and Medzhitov, R. (2004) Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987-995 https://doi.org/10.1038/ni1112
  18. Kawai, T. and Akira, S. (2005) Toll-like receptor downstream signaling. Arthritis Res. Ther. 7, 12-19 https://doi.org/10.1186/ar1469
  19. Kopp, T., Lenz, P., Bello-Fernandez, C., Kastelein, R. A., Kupper, T. S., et al. (2003) IL-23 production by cosecretion of endogenous p19 and transgenic p40 in keratin 14/p40 transgenic mice: evidence for enhanced cutaneous immunity. J. Immunol. 170, 5438-5444
  20. Langrish, C. L., McKenzie, B. S., Wilson, N. J., de Waal Malefyt, R., Kastelein, R. A., et al. (2004) IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96-105 https://doi.org/10.1111/j.0105-2896.2004.00214.x
  21. Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., et al. (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233240 https://doi.org/10.1084/jem.20041257
  22. Liu, Y. J. (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259-262 https://doi.org/10.1016/S0092-8674(01)00456-1
  23. Mohrs, M., Shinkai, K., Mohrs, K., and Locksley, R. M. (2001) Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303311 https://doi.org/10.1016/S1074-7613(01)00186-8
  24. O'Neill, L. A. (2004) Immunology. After the toll rush. Science 303, 1481-1482 https://doi.org/10.1126/science.1096113
  25. Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., et al. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715-725 https://doi.org/10.1016/S1074-7613(00)00070-4
  26. Pasare, C. and Medzhitov, R. (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382-1387 https://doi.org/10.1016/j.micinf.2004.08.018
  27. Schuler, G., Schuler-Thurner, B., and Steinman, R. M. (2003) The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138-147 https://doi.org/10.1016/S0952-7915(03)00015-3
  28. Shortman, K. and Liu, Y. J. (2002) Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151-161 https://doi.org/10.1038/nri746
  29. Steinman, L. (2004) Immune therapy for autoimmune diseases. Science 305, 212-216 https://doi.org/10.1126/science.1099896
  30. Steinman, R. M. and Mellman, I. (2004) Immunotherapy: bewitched, bothered, and bewildered no more. Science 305, 197-200 https://doi.org/10.1126/science.1099688
  31. Stetson, D. B., Mohrs, M., Reinhardt, R. L., Baron, J. L., Wang, Z. E., et al. (2003) Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069-1076 https://doi.org/10.1084/jem.20030630
  32. Takeda, K. and Akira, S. (2004a) Microbial recognition by Tolllike receptors. J. Dermatol. Sci. 34, 73-82 https://doi.org/10.1016/j.jdermsci.2003.10.002
  33. Takeda, K. and Akira, S. (2004b) TLR signaling pathways. Semin. Immunol. 16, 3-9 https://doi.org/10.1016/j.smim.2003.10.003
  34. Takeda, K. and Akira, S. (2005) Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14
  35. Trinchieri, G. (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133-146 https://doi.org/10.1038/nri1001
  36. Trinchieri, G. and Scott, P. (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions. Res. Immunol. 146, 423-431 https://doi.org/10.1016/0923-2494(96)83011-2
  37. Trinchieri, G. and Scott, P. (1999) Interleukin-12: basic principles and clinical applications. Curr. Top Microbiol. Immunol. 238, 57-78
  38. van de Vosse, E., Lichtenauer-Kaligis, E. G., van Dissel, J. T., and Ottenhoff, T. H. (2003) Genetic variations in the interleukin- 12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function. Immunogenetics 54, 817-829
  39. Visser, L., Jan de Heer, H., Boven, L. A., van Riel, D., van Meurs, M., et al. (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J. Immunol. 174, 808-816
  40. Wang, S., Zhu, G., Chapoval, A. I., Dong, H., Tamada, K., et al. (2000) Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 96, 2808-2813
  41. Watford, W. T., Moriguchi, M., Morinobu, A., and O'Shea, J. J. (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 14, 361-368 https://doi.org/10.1016/S1359-6101(03)00043-1
  42. Wilczynski, J. R. (2005) Th1/Th2 cytokines balance-yin and yang of reproductive immunology. Eur. J. Obstet. Gynecol. Reprod. Biol. (in press)
  43. Wilson, H. L. and O'Neill, H. C. (2003) Murine dendritic cell development: difficulties associated with subset analysis. Immunol. Cell. Biol. 81, 239-246 https://doi.org/10.1046/j.1440-1711.2003.t01-1-01165.x
  44. Zuniga, E. I., McGavern, D. B., Pruneda-Paz, J. L., Teng, C., and Oldstone, M. B. (2004) Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5, 1227-1234 https://doi.org/10.1038/ni1136