Regulation of Macrophage Ceruloplasmin Gene Expression: One Paradigm of 3'-UTR-mediated Translational Control

  • Mazumder, Barsanjit (Department of Biology, Geology, and Environmental Sciences, Cleveland State University) ;
  • Sampath, Prabha (Department of Pathology, University of Washington) ;
  • Fox, Paul L. (Department of Biology, Geology, and Environmental Sciences, Cleveland State University)
  • Received : 2005.10.12
  • Accepted : 2005.10.14
  • Published : 2005.10.31

Abstract

Ceruloplasmin (Cp) is a copper protein with important functions in iron homeostasis and in inflammation. Cp mRNA expression is induced by interferon (IFN)-${\gamma}$ in U937 monocytic cells, but synthesis of Cp protein is halted after about 12 h by transcript-specific translational silencing. The silencing mechanism requires binding of a 4-component cytosolic inhibitor complex, IFN-gamma-activated inhibitor of translation (GAIT), to a defined structural element (GAIT element) in the Cp 3'-UTR. Translational silencing of Cp mRNA requires the essential proteins of mRNA circularization, suggesting that the translational inhibition requires end-to-end mRNA closure. These studies describe a new mechanism of translational control, and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.

Keywords

Acknowledgement

Supported by : National Institutes of Health

References

  1. Attieh, Z. K., Mukhopadhyay, C. K., Seshadri, V., Tripoulas, N. A., and Fox, P. L. (1999) Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J. Biol. Chem. 274, 1116-1123 https://doi.org/10.1074/jbc.274.2.1116
  2. Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A., and Kaempfer, R. (2002) Human interferon-g mRNA autoregulates its translation through a pseudoknot that activates the interferoninducible protein kinase PKR. Cell 108, 221-232 https://doi.org/10.1016/S0092-8674(02)00616-5
  3. Cherukuri, S., Potla, R., Sarkar, J., Nurko, S., Harris, Z. L., et al. (2005) Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab. (in press)
  4. Copeland, P. R. and Driscoll, D. M. (2001) RNA binding proteins and selenocysteine. Biofactors 14, 11-16 https://doi.org/10.1002/biof.5520140103
  5. Dever, T. E. (2002) Gene-specific regulation by general translation factors. Cell 108, 545-556
  6. Ehrenwald, E. and Fox, P. L. (1996) Role of endogenous ceruloplasmin in LDL oxidation by human U937 monocytic cells. J. Clin. Invest. 97, 884-890 https://doi.org/10.1172/JCI118491
  7. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M., and Bogdan, C. (2003) Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561-4568
  8. Fleming, R. E., Whitman, I. P., and Gitlin, J. D. (1991) Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am. J. Physiol. 260, L68-L74
  9. Fox, P. L., Mazumder, B., Ehrenwald, E., and Mukhopadhyay, C. K. (2000) Ceruloplasmin and cardiovascular disease. Free Radic. Biol. Med. 28, 1735-1744 https://doi.org/10.1016/S0891-5849(00)00231-8
  10. Garcia, G. E., Xia, Y., Ku, G., Johnson, R. J., Wilson, C. B., et al. (2003) IL-18 translational inhibition restricts IFN-g expression in crescentic glomerulonephritis. Kidney Int. 64, 160-169 https://doi.org/10.1046/j.1523-1755.2003.00077.x
  11. Gebauer, F. and Hentze, M. W. (2004) Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827-835 https://doi.org/10.1038/nrm1488
  12. Harris, Z. L., Durley, A. P., Man, T. K., and Gitlin, J. D. (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96, 10812-10817
  13. Keene, J. D. and Tenenbaum, S. A. (2002) Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161-1167 https://doi.org/10.1016/S1097-2765(02)00559-2
  14. Klausner, R. D., Rouault, T. A., and Harford, J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19-28 https://doi.org/10.1016/0092-8674(93)90046-S
  15. Klebanoff, S. J. (1992) Bactericidal effect of $Fe^{2+}$ , ceruloplasmin, and phosphate. Arch. Biochem. Biophys. 295, 302-308 https://doi.org/10.1016/0003-9861(92)90522-X
  16. Mazumder, B. and Fox, P. L. (1999) Delayed translational silencing of ceruloplasmin transcript in gamma interferonactivated U937 monocytic cells: Role of the 3' untranslated region. Mol. Cell. Biol. 19, 6898-6905
  17. Mazumder, B., Mukhopadhyay, C. K., Prok, A., Cathcart, M. K., and Fox, P. L. (1997) Induction of ceruloplasmin synthesis by IFN-g in human monocytic cells. J. Immunol. 159, 1938-1944
  18. Mazumder, B., Sampath, P., Seshadri, V., Maitra, R. K., DiCorleto, P., et al. (2003a) Regulated release of L13a from the 60s ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187-198 https://doi.org/10.1016/S0092-8674(03)00773-6
  19. Mazumder, B., Seshadri, V., and Fox, P. L. (2003b) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem. Sci. 28, 91-98 https://doi.org/10.1016/S0968-0004(03)00002-1
  20. Mazumder, B., Seshadri, V., Imataka, H., Sonenberg, N., and Fox, P. L. (2001) Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 21, 6440-6449 https://doi.org/10.1128/MCB.21.19.6440-6449.2001
  21. Mukhopadhyay, C. K., Mazumder, B., Lindley, P. F., and Fox, P. L. (1997) Identification of the prooxidant site of human ceruloplasmin: A model for oxidative damage by copper bound to protein surfaces. Proc. Natl. Acad. Sci. USA 94, 11546-11551
  22. Musci, G. (2001) Ceruloplasmin, the unique multi-copper oxidase of vertebrates. Protein Pept. Lett. 8, 159-169 https://doi.org/10.2174/0929866013409517
  23. Patel, B. N. and David, S. (1997) A novel glycosylphosphatidylinositol- anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272, 20185-20190 https://doi.org/10.1074/jbc.272.32.20185
  24. Pesole, G., Liuni, S., and D'Souza, M. (2000) PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance. Bioinformatics 16, 439-450 https://doi.org/10.1093/bioinformatics/16.5.439
  25. Pesole, G., Liuni, S., Grillo, G., Licciulli, F., Mignone, F., et al. (2002) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res. 30, 335-340 https://doi.org/10.1093/nar/30.1.335
  26. Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., et al. (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029-7036
  27. Qian, Z. M., Tsoi, Y. K., Ke, Y., and Wong, M. S. (2001) Ceruloplasmin promotes iron uptake rather than release in BT325 cells. Exp. Brain Res. 140, 369-374 https://doi.org/10.1007/s002210100831
  28. Rabizadeh, S., Gralla, E. B., Borchelt, D. R., Gwinn, R., Valentine, J. S., et al. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: Studies in yeast and neural cells. Proc. Natl. Acad. Sci. USA 92, 3024-3028
  29. Sachs, A. B. and Varani, G. (2000) Eukaryotic translation initiation: there are (at least) two sides to every story. Nat. Struct. Biol. 7, 356-361 https://doi.org/10.1038/75120
  30. Salzer, J. L., Lovejoy, L., Linder, M. C., and Rosen, C. (1998) Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J. Neurosci. Res. 54, 147-157 https://doi.org/10.1002/(SICI)1097-4547(19981015)54:2<147::AID-JNR3>3.0.CO;2-E
  31. Sampath, P., Mazumder, B., Seshadri, V., and Fox, P. L. (2003) Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region. Mol. Cell. Biol. 23, 1509-1519 https://doi.org/10.1128/MCB.23.5.1509-1519.2003
  32. Sampath, P., Mazumder, B., Seshadri, V., Gerber, C. A., Chavatte, L., et al. (2004) Noncanonical function of glutamylprolyl- tRNA synthetase: gene-specific silencing of translation. Cell 119, 195-208 https://doi.org/10.1016/j.cell.2004.09.030
  33. Sarkar, J., Seshadri, V., Tripoulas, N. A., Ketterer, M. E., and Fox, P. L. (2003) Role of ceruloplasmin in macrophage iron efflux during hypoxia. J. Biol. Chem. 278, 44018-44024 https://doi.org/10.1074/jbc.M304926200
  34. Schechinger, T., Hartmann, H. J., and Weser, U. (1986) Copper transport from Cu(I)-thionein into apo-caeruloplasmin mediated by activated leucocytes. Biochem. J. 240, 281-283
  35. Standart, N. and Jackson, R. J. (1994) Regulation of translation by specific protein/mRNA interactions. Biochimie 76, 867-879 https://doi.org/10.1016/0300-9084(94)90189-9
  36. Tarun, S. Z. and Sachs, A. B. (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997-3007 https://doi.org/10.1101/gad.9.23.2997
  37. Vulpe, C. D., Kuo, Y. M., Murphy, T. L., Cowley, L., Askwith, C., et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195-199 https://doi.org/10.1038/5979
  38. Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135-140 https://doi.org/10.1016/S1097-2765(00)80122-7
  39. Xu, X., Pin, S., Gathinji, M., Fuchs, R., and Harris, Z. L. (2004) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann. N. Y. Acad. Sci. 1012, 299-305 https://doi.org/10.1196/annals.1306.024
  40. Yang, F., Naylor, S. L., Lum, J. B., Cutshaw, S., McCombs, J. L., et al. (1986) Characterization, mapping, and expression of the human ceruloplasmin gene. Proc. Natl. Acad. Sci. USA 83, 3257-3261