The Fission Yeast Gene Encoding Monothiol Glutaredoxin 5 Is Regulated by Nitrosative and Osmotic Stresses

  • Kim, Hong-Gyum (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park, Eun-Hee (College of Pharmacy, Sookmyung Women's University) ;
  • Lim, Chang-Jin (Division of Life Sciences, College of Natural Sciences, Kangwon National University)
  • Received : 2004.12.30
  • Accepted : 2005.04.13
  • Published : 2005.08.31

Abstract

Glutaredoxin (Grx) is a small, heat-stable redox protein acting as a multi-functional glutathione (GSH)-dependent disulfide oxidoreductase. We have cloned the monothiol Grx5 gene from the genomic DNA of the fission yeast Schizosaccharomyces pombe. It has 1,904 bp, with one intron, and encodes a putative protein of 146 amino acids with a molecular mass of 16.5 kDa. Recombinant Grx5 produced functional Grx in S. pombe cells. NO-generating sodium nitroprusside (SNP, 1.0 and 2.0 mM) and potassium chloride (KCl, 0.2 and 0.5 M) increased the synthesis of ${\beta}$-galactosidase from a Grx5-lacZ fusion gene, and transcription of Grx5 was also enhanced by SNP and KCl. Synthesis of ${\beta}$-galactosidase from the Grx5-lacZ fusion was lower in Pap1-negative TP108-3C cells than in wild type KP1 cells, and when Pap1 was overproduced in KP1 cells, the level of ${\beta}$-galactosidase increased. We also found that Pap1 is involved in the induction of Grx5 by SNP and KCl. S. pombe Grx5 may play a crucial role in responses to nitrosative and osmotic stresses.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Bandyopadhyay, S., Starke, D. W., Mieyal, J. J., and Gronostajski, R. M. (1998) Thioltransferase (glutaredoxin) reactivates the DNA-binding activity of oxidation-inactivated nuclear factor I. J. Biol. Chem. 273, 392-397 https://doi.org/10.1074/jbc.273.1.392
  2. Belli, G., Polaina, J., Tamarit, J., de la Torre, M. A., Rodríguez- Manzaneque, M. T., et al. (2002) Structure-function analysis of yeast Grx5 monothiol glutaredoxin defines essential amino acids for the function of the protein. J. Biol. Chem. 277, 37590-37596 https://doi.org/10.1074/jbc.M201688200
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Cho, Y.-W., Kim, H.-G., Park, E.-H., Fuchs, J. A., and Lim, C.-J. (2000) Cloning, expression and regulation of Schizosaccharomyces pombe gene encoding thioltransferase. Biochim. Biophys. Acta 1518, 194-199
  5. Chrestensen, C. A., Eckman, C. B., Starke, D. W., and Mieyal, J. J. (1995) Cloning, expression and characterization of human thioltransferase (glutaredoxin) in E. coli. FEBS Lett. 374, 25-28 https://doi.org/10.1016/0014-5793(95)01066-N
  6. Cohen, S. N., Chang, A. C., and Hsu, L. (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110-2114
  7. Costa, L. G. and Murphy, S. D. (1986) Effect of diethylmaleate and other glutathione depletors on protein synthesis. Biochem. Pharmacol. 35, 3383-3388 https://doi.org/10.1016/0006-2952(86)90439-9
  8. Deneke, S. M. and Fanburg, B. L. (1989) Regulation of cellular glutathione. Am. J. Physiol. 257, L163-L173
  9. Deneke, S. M., Lynch, B. A., and Fanburg, B. L. (1985) Transient depletion of lung glutathione by diethylmaleate enhances oxygen toxicity. J. Appl. Physiol. 58, 571-574
  10. Ding, D.-Q., Tomita, Y., Yamamoto, A., Chikashige, Y., Haraguchi, T., et al. (2000) Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes Cells 5, 169-190 https://doi.org/10.1046/j.1365-2443.2000.00317.x
  11. Fujii, Y., Shimizu, T., Toda, T., Yanagida, M., and Hakoshima, T. (2000) Structural basis for the diversity of DNA recognition by bZIP transcription factors. Nat. Struct. Biol. 7, 889-893 https://doi.org/10.1038/82822
  12. Grant, C. M., Liukenhuis, S., Beckhouse, A., Soderbergh, M., and Dawes, I. W. (2000) Differential regulation of glutaredoxin gene expression in response to stress conditions in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1490, 33-42
  13. Guarente, L. (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101, 181-191 https://doi.org/10.1016/0076-6879(83)01013-7
  14. Hassan, H. M. and Fridovich, I. (1979) Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch. Biochem. Biophys. 196, 385-395 https://doi.org/10.1016/0003-9861(79)90289-3
  15. Hirota, K., Matsui, M., Murata, M., Takashima, Y., Cheng, F. S., et al. (2000) Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem. Biophys. Res. Commun. 274, 177-182 https://doi.org/10.1006/bbrc.2000.3106
  16. Holmgren, A. (1979) Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J. Biol. Chem. 254, 3664-3671
  17. Holmgren, A. (1989) Thioredoxin and glutaredoxin system. J. Biol. Chem. 264, 13963-13966
  18. Kim, H.-G., Cho, Y.-W., Park, E.-H., Park, S.-S., Ahn, K.-S., et al. (1999) Cloning, nucleotide sequence and expression of thioltransferase (glutaredoxin) cDNA from Schizosaccharomyces pombe. Mol. Cells 9, 668-672
  19. Kim, H.-G., Kim, B.-C., Park, E.-H., and Lim, C.-J. (2005a) Stress-dependent regulation of a monothiol glutaredoxin gene from Schizosaccharomyces pombe. Can. J. Microbiol. 51, (in press)
  20. Kim, H.-G., Kim, J.-H., Kim, B.-C., Park, E.-H., and Lim, C.-J. (2005b) Carbon source-dependent regulation of a second gene encoding glutaredoxin from the fission yeast Schizosaccharomyces pombe. Mol. Biol. Rep. 32, 15-24 https://doi.org/10.1007/s11033-004-3213-0
  21. Lee, D. H., Kang, S.-G., Suh, S.-G., and Byun, J. K. (2003) Purification and characterization of a ${\beta}$-galactosidase from peach (Prunus persica). Mol. Cells 15, 68-74
  22. Lim, C.-J., Cho, Y.-W., Hong, S.-M., Lim, H-W., and Park, E.-H. (2003) The thioltransferase (glutaredoxin) 1 gene of fission yeast is regulated by Atf1 and Pap1. Mol. Cells 16, 123-127
  23. Liu, X. D. and Thiele, D. J. (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. Methods Enzymol. 11, 289-299 https://doi.org/10.1006/meth.1996.0423
  24. Lopreiato, R., Facchin, S., Sartori, G., Arrigoni, G., Casonato, S., et al. (2004) Analysis of the interaction between piD261/ Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. Biochem. J. 377, 395-405 https://doi.org/10.1042/BJ20030638
  25. Marshall, H. F., Merchant, K., and Stamler, J. S. (2000) Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14, 1889-1900 https://doi.org/10.1096/fj.00.011rev
  26. Meister, A. (1994) Glutathione-ascorbic acid antioxidant system in animals. J. Biol. Chem. 269, 9397-9400
  27. Myers, A. M., Tzagoloff, A., Kinney, D. M., and Lusty, C. J. (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45, 299-310 https://doi.org/10.1016/0378-1119(86)90028-4
  28. Nathan, C. and Shiloh, M. U. (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97, 8841-8848
  29. Nguyen, A. N., Lee, A., Place, W., and Shiozaki, K. (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11, 1169-1181
  30. Prieto-Alamo, M. J., Jurado, J., Gallardo-Madueno, R., Monje- Casas, F., Holmgren, A., et al. (2000) Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress. J. Biol. Chem. 275, 13398-13405 https://doi.org/10.1074/jbc.275.18.13398
  31. Rodriguez-Manzaneque, M. T., Ros, J., Cabiscol, E., Sorribas, A., and Herrero, E. (1999) Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8180-8190
  32. Rodriguez-Manzaneque, M. T., Tamarit, J., Bellí, G., Ros, J., and Herrero, E. (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13, 1109-1121 https://doi.org/10.1091/mbc.01-10-0517
  33. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  34. Shen, B., Hohmann, S., Jensen, R. G., and Bohnert, H. J. (1999) Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol. 121, 45-52 https://doi.org/10.1104/pp.121.1.45
  35. Shenton, D., Perrone, G., Quinn, K. A., Dawes, I. W., and Grant, C. M. (2002) Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 277, 16853-16859 https://doi.org/10.1074/jbc.M200559200
  36. Shieh, J.-C., Wilkinson, M. C., Buck, V., Morgan, B. A., Makino, K., et al. (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev. 11, 1008- 1022 https://doi.org/10.1101/gad.11.8.1008
  37. Shiozaki, K. and Russell, P. (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10, 2276-2288 https://doi.org/10.1101/gad.10.18.2276
  38. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27
  39. Song, J. J. and Lee, Y. J. (2003) Differential role of glutaredoxin and thioredoxin in metabolic oxidative stress-induced activation of apoptosis signal-regulation kinase 1. Biochem. J. 373, 845-853 https://doi.org/10.1042/BJ20030275
  40. Song, J. J., Rhee, J. G., Suntharalingam, M., Walsh, S. A., Spitz, D. R., et al. (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by $H_2O_2$. J. Biol. Chem. 277, 46566-46575 https://doi.org/10.1074/jbc.M206826200
  41. Starke, D. W., Chock, P. B., and Mieyal, J. J. (2003) Glutathione- thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J. Biol. Chem. 278, 14607-14613 https://doi.org/10.1074/jbc.M210434200
  42. Tamarit, J., Bellí, G., Cabiscol, E., Herrero, E., and Ros, J. (2003) Biochemical characterization of yeast mitochondrial Grx5 monothiol glutaredoxin. J. Biol. Chem. 278, 25745- 25751 https://doi.org/10.1074/jbc.M303477200
  43. Toda, T., Shimanuki, M., and Yanagida, M. (1991) Fission yeast genes that confer resistance to staurosporine encode an AP-1- like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5, 60-73 https://doi.org/10.1101/gad.5.1.60
  44. Toone, W. M., Kuge, S., Samuels, M., Morgan, B. A., Toda, T., et al. (1998) Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12, 23042-23049