Phospholipase C-β3 Mediates the Thrombin-induced Ca2+ Response in Glial Cells

  • Hwang, Jong-Ik (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology) ;
  • Shin, Kum-Joo (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology) ;
  • Oh, Yong-Seok (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology) ;
  • Choi, Jung-Woong (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology) ;
  • Lee, Zee-Won (Biomolecule Research Group, Korea Basic Science Institute) ;
  • Kim, Daesoo (Center for Calcium and Learning, Korea Institute of Science and Technology) ;
  • Ha, Kwon-Soo (Biomolecule Research Group, Korea Basic Science Institute) ;
  • Shin, Hee-Sup (Center for Calcium and Learning, Korea Institute of Science and Technology) ;
  • Ryu, Sung Ho (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology) ;
  • Suh, Pann-Ghill (Department of Life Science, Division of Molecular and Life Science Pohang University of Science and Technology)
  • Received : 2005.01.12
  • Accepted : 2005.01.25
  • Published : 2005.06.30

Abstract

Phospholipase C-${\beta}$ (PLC-${\beta}$) hydrolyses phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate in response to activation of various G protein-coupled receptors (GPCRs). Using glial cells from knock-out mice lacking either PLC-${\beta}1$ [PLC-${\beta}1$ (-/-)] or PLC-${\beta}3$ [PLC-${\beta}3$ (-/-)], we examined which isotype of PLC-${\beta}$ participated in the cellular signaling events triggered by thrombin. Generation of inositol phosphates (IPs) was enhanced by thrombin in PLC-${\beta}1$ (-/-) cells, but was negligible in PLC-${\beta}3$ (-/-) cells. Expression of PLC-${\beta}3$ in PLC-${\beta}3$ (-/-) cells resulted in an increase in pertussis toxin (PTx)-sensitive IPs in response to thrombin as well as to PAR1-specific peptide, while expression of PLC-${\beta}1$ in PLC-${\beta}1$ (-/-) cells did not have any effect on IP generation. The thrombin-induced $[Ca^{2+}]_i$ increase was delayed and attenuated in PLC-${\beta}3$ (-/-) cells, but normal in PLC-${\beta}1$ (-/-) cells. Pertussis toxin evoked a delayed $[Ca^{2+}]_i$ increase in PLC-${\beta}3$ (-/-) cells as well as in PLC-${\beta}1$ (-/-) cells. These results suggest that activation of PLC-${\beta}3$ by pertussis toxin-sensitive G proteins is responsible for the transient $[Ca^{2+}]_i$ increase in response to thrombin, whereas the delayed $[Ca^{2+}]_i$ increase may be due to activation of some other PLC, such as PLC-${\beta}4$, acting via PTx-insensitive G proteins.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. Ashkenazi, A., Winslow, J. W., Peralta, E. G., Peterson, G. L., Schimerlik, M. I., et al. (1987) An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science 238, 672-675 https://doi.org/10.1126/science.2823384
  2. Baffy, G., Yang, L., Raj, D. R., Manning, D. R., and Williamson, J. R. (1994) G protein coupling to the thrombin receptor in chinese hamster lung fibroblasts. J. Biol. Chem. 269, 8483- 8487
  3. Benka, M. L., Lee, M., Wang, G.-R., Buckman, S., Burlacu, A., et al. (1995) The thrombin receptor in human platelets is coupled to a GTP binding protein of the G alpha q family. FEBS Lett. 363, 49-52 https://doi.org/10.1016/0014-5793(95)00278-H
  4. Berstein, G., Blank, J. L., Smrcka, A. V., Higashijima, T., Sternweis, P. C., et al. (1992) Regulation of agonist-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis using purified m1 muscarinic receptor, Gq/11, and phospholipase C beta1. J. Biol. Chem. 267, 8081-8088
  5. Birnbaumer, L. (1992) Receptor-to-effector signaling through proteins: roles for dimers as well as subunits. Cell 71, 1069- 1072 https://doi.org/10.1016/S0092-8674(05)80056-X
  6. Blank, J. L., Brattain, K. A., and Exton, J. H. (1992) Activation of cytosolic phosphoinositide phospholipase C by G-protein ${\beta}{\gamma}$ subunits. J. Biol. Chem. 267, 23069-23075
  7. Dery, O., Corvera, C. U., Steinhoff, M., and Bunnett, W. (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. 274, C1429-C1452
  8. Exton, J. H. (1994) Phosphoinositide phospholipases and G proteins in hormone action. Annu. Rev. Physiol. 56, 349-369 https://doi.org/10.1146/annurev.ph.56.030194.002025
  9. Gerard, C. and Gerard, N. P. (1994) The pro-inflammatory seven-transmembrane segment receptors of the leukocyte. Curr. Opin. Immunol. 6, 140-145 https://doi.org/10.1016/0952-7915(94)90045-0
  10. Gill, D. L., Ghosh, T. K., Bian, J., Short, A. D., Waldron, R. T., et al. (1992) Function and organization of the inositol 1,4,5- trisphosphate-sensitive calcium pool. Adv. Second Messenger Phosphoprotein Res. 26, 265-308
  11. Grand, R. J. A., Turnell, A. S., and Grabham, P. W. (1996) Cellular consequences of thrombin-receptor activation. Biochem. J. 313, 353-368
  12. Gutkind, J. S. (1998) The pathways connecting G proteincoupled receptors to the nucleus through divergent mitogenactivated protein kinase cascades. J. Biol. Chem. 273, 1839- 1842 https://doi.org/10.1074/jbc.273.4.1839
  13. He, T.-G., Zhou, S., Costa, L. T., Yu, J., Kinzler, K. W., et al. (1998) A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509-2514
  14. Hwang, J.-I., Heo, K., Shin, K.-J., Kim, E., Yun, C.-H. C., et al. (2000) Regulation of phospholipase C-$\beta$3 activity by Na+/H+ exchanger regulatory factor 2. J. Biol. Chem. 275, 16632- 16637 https://doi.org/10.1074/jbc.M001410200
  15. Jeong, J. H., Yun, M. C., Shin, C. Y., Lee, T. S., Song, H. J., et al. (2003) Signaling via histamine receptors in cat duodenal smooth muscle cells. Mol. Cells 16, 180-186
  16. Jhon, D. Y., Lee, H. H., Park, D., Lee, C. W., Lee, K. H., et al. (1993) Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-${\beta}3$. J. Biol. Chem. 268, 6654- 6661
  17. Ji, T. H., Grossmann, M., and Ji, I. (1998) G protein-coupled receptors. I. Diversity of receptor ligand interactions. J. Biol. Chem. 273, 17299-17302 https://doi.org/10.1074/jbc.273.28.17299
  18. Jiang, H., Kuang, Y., Wu, Y., Smrcka, A., Simon, M. I., et al. (1996) Pertussis toxin-sensitive activation of phospholipase C by the C5a and fMLP receptors. J. Biol. Chem. 271, 13430-13434 https://doi.org/10.1074/jbc.271.23.13430
  19. Kanthou, C., Kanse, S. M., Kankkar, V. V., and Benzakour, O. (1996) Involvement of pertussis toxin-sensitive and – insensitive G proteins in alpha-thrombin signaling on cultured human vascular smooth muscle cells. Cell Signal. 8, 59-66 https://doi.org/10.1016/0898-6568(95)02018-7
  20. Katz, A., Wu, D., and Simon, M. I. (1992) Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 360, 686-689 https://doi.org/10.1038/360686a0
  21. Kim, D., Jun, K. S., Lee, S. B., Kang, N.-G., Min, D. S., et al. (1997) Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290-293 https://doi.org/10.1038/38508
  22. Lee, Z.-W., Kweon, S.-M., Kim, B.-C., Leem, S.-H., Shin, I., et al. (1998) Phosphatidic acid-induced elevation of intracellular $Ca^{2+}$ is mediated by RhoA and $H_{2}O_{2}$ in Rat-2 fibroblasts. J. Biol. Chem. 273, 12710-12715 https://doi.org/10.1074/jbc.273.21.12710
  23. Li, Z., Jiang, H., Xie, W., Zhang, Z., Smrcka, A. V., et al. (2000) Roles of PLC-beta2 and -beta3 and PI3K-$\gamma$ in chemoattractant- mediated signal transduction. Science 287, 1046-1049 https://doi.org/10.1126/science.287.5455.1046
  24. O'Brien, P. J., Prevost, N., Molino, M., Hollinger, M. K., Woolkalis, M. J., et al. (2000) Thrombin responses in human thrombin endothelial cells. J. Biol. Chem. 275, 13502-13509 https://doi.org/10.1074/jbc.275.18.13502
  25. Offermanns, S., Toombs, C. F., Hu, Y. H., and Simon, M. I. (1997) Defective platelet activation in G alpha(q)-deficient mice. Nature 389, 183-186 https://doi.org/10.1038/38284
  26. Rao, G. N., Delafontaine, P., and Runge, M. S. (1995) Thrombin stimulates phosphorylation of insulin-like growth factor-1 receptor, insulin receptor substrate-1, and phospholipase C-$\gamma$1 in rat aortic smooth muscle cells. J. Biol. Chem. 270, 27871-27875 https://doi.org/10.1074/jbc.270.46.27871
  27. Simon, M. I., Strathman, M. P., and Gautam, M. (1991) Diversity of G proteins in signal transduction. Science 252, 802- 808 https://doi.org/10.1126/science.1902986
  28. Smrcka, A. V. and Sternweis, P. C. (1993) Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C-${\beta}$ by G protein $\alpha$ and ${\beta}{gamma}$ subunits. J. Biol. Chem. 268, 9667- 9674
  29. Sternweis, P. C. and Smrcka, A. V. (1992) Regulation of phospholipase C by G proteins. Trends Biochem. Sci. 17, 502-506 https://doi.org/10.1016/0968-0004(92)90340-F
  30. Strader, C. D., Fong, T. M., Graziano, M. P., and Tota, M. R. (1995) The family of G-protein-coupled receptors. FASEB J. 9, 745-754
  31. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., and Dawson, A. P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. USA 87, 2466-2470
  32. Ushio-Fukai, M., Griendling, K. K., Akers, M., Lyons, P. R., and Alexander, R. W. (1998) Temporal dispersion of activation of phospholipase C-beta1 and -gamma isoforms by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 273, 19772-19777 https://doi.org/10.1074/jbc.273.31.19772
  33. Verghese, M. W., Charles, L., Jakoi, L., Dillon, S., and Snyderman, R. (1987) Role of a guanine nucleotide regulatory protein in the activation of phospholipase C by different chemoattractants. J. Immunol. 138, 4374-4380
  34. Wang, J.-L., Kalyanaraman, S., De Vivo, M., and Gautam, N. (1996) Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins. Biochem. J. 320, 87-91
  35. Wess, J. (1997) G-protein-coupled receptors: molecular mechanisms involved in receptor activation and selectivity of Gprotein recognition. FASEB J. 11, 346-354
  36. Wu, D., LaRosa, G. J., and Simon, M. I. (1993a) G proteincoupled signal transduction pathways for interleukin-8. Science 261, 101-103 https://doi.org/10.1126/science.8316840
  37. Wu, D., Katz, A., and Simon, M. I. (1993b) Activation of phospholipase C-$\beta$2 by the alpha and beta gamma subunits of trimeric GTP-binding protein. Proc. Natl. Acad. Sci. USA 90, 5297-5301