Biochemical Analysis of a Cytosolic Small Heat Shock Protein, NtHSP18.3, from Nicotiana tabacum

  • Yu, Ji Hee (Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Kim, Keun Pill (Institute of Molecular Biology and Genetics, Seoul National University) ;
  • Park, Soo Min (Division of Biological Sciences, University of California at Davis) ;
  • Hong, Choo Bong (Institute of Molecular Biology and Genetics, Seoul National University)
  • Received : 2004.10.18
  • Accepted : 2005.01.31
  • Published : 2005.06.30

Abstract

Small heat shock proteins (sHSPs) are widely distributed, and their function and diversity of structure have been much studied in the field of molecular chaperones. In plants, which frequently have to cope with hostile environments, sHSPs are much more abundant and diverse than in other forms of life. In response to high temperature stress, sHSPs of more than twenty kinds can make up more than 1% of soluble plant proteins. We isolated a genomic clone, NtHSP18.3, from Nicotiana tabacum that encodes the complete open reading frame of a cytosolic class I small heat shock protein. To investigate the function of NtHSP18.3 in vitro, it was overproduced in Escherichia coli and purified. The purified NtHSP18.3 had typical molecular chaperone activity as it protected citrate synthase and luciferase from high temperature-induced aggregation. When E. coli celluar proteins were incubated with NtHSP18.3, a large proportion of the proteins remained soluble at temperatures as high as $70^{\circ}C$. Native gel analysis suggested that NtHSP18.3 is a dodecameric oligomer as the form present and showing molecular chaperone activity at the condition tested. Binding of bis-ANS to the oligomers of NtHSP18.3 indicated that exposure of their hydrophobic surfaces increased as the temperature was raised. Taken together, our data suggested that NtHSP18.3 is a molecular chaperone that functions as a dodecameric complex and possibly in a temperature-induced manner.

Keywords

Acknowledgement

Supported by : Crop Functional Genomics Center, Ministry of Science and Technology of Korea

References

  1. Abdulle, R., Mohindra, A., Fernando, P., and Heikkila, J. J. (2002) Xenopus small heat shock proteins, Hsp30C and Hsp30D, maintain heat- and chemically denatured luciferase in a folding- competent state. Cell Stress Chap. 7, 6-16 https://doi.org/10.1379/1466-1268(2002)007<0006:XSHSPH>2.0.CO;2
  2. Anderson, L. O., Borg, H., and Mikaelesson, M. (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20, 199-202 https://doi.org/10.1016/0014-5793(72)80793-2
  3. Bova, M. P., Ding, L. L., Horwitz, J., and Fung, B. K. K. (1997) Subunit exchange of ${\alpha}$A-crystallin. J. Biol. Chem. 272, 29511- 29517 https://doi.org/10.1074/jbc.272.47.29511
  4. Bova, M. P., Mchaourab, H. S., Han, Y., and Fung, B. K. K. (2000) Subunit exchange of small heat shock proteins. J. Biol. Chem. 275, 1035-1042 https://doi.org/10.1074/jbc.275.2.1035
  5. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Buchanan, B., Gruissem, R., and Jones, E. (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, Maryland
  7. Chen, Q., Osteryoung, K., and Vierling, E. (1994) A 21 kDa chloroplast heat-shock protein assembles into high molecular weight complexes in vivo and on organelle. J. Biol. Chem. 269, 13216-13223
  8. Cho, E. K. and Hong, C. B. (2004) Molecular cloning and expression pattern analyses of heat shock protein 70 genes from Nicotiana tabacum. J. Plant Biol. 47, 149-159 https://doi.org/10.1007/BF03030646
  9. Chowdary, T. K., Raman, B., Ramakrishna, T., and Rao, C. M. (2004) Mammalian Hsp22 is a heat-inducible small heat-shock protein with chaperone-like activity. Biochem J. 381, 379-387 https://doi.org/10.1042/BJ20031958
  10. Das, K. P. and Surewicz, W. K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of ${\alpha}$-crystallin. FEBS Lett. 369, 321-325 https://doi.org/10.1016/0014-5793(95)00775-5
  11. Ehrnsperger, M., Gräber, S., Gaestel, M., and Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16, 221-229 https://doi.org/10.1093/emboj/16.2.221
  12. Ehrnsperger, M., Lilie, H., Gaestel, M., and Buchner, J. (1999) The dynamics of Hsp25 quarternary structure. J. Biol. Chem. 274, 14867-14874 https://doi.org/10.1074/jbc.274.21.14867
  13. Haslbeck, M., Walke, S., Stromer, T., Ehrnsperger, M., White, H. E., et al. (1999) Hsp26: a temperature-regulated chaperone. EMBO J. 18, 6744-6751 https://doi.org/10.1093/emboj/18.23.6744
  14. Helm, K. W., LaFayette, P. R., Nagao, R. T., Key, J. L., and Vierling, E. (1993) Localization of small heat shock proteins to the higher plant endomembrane system. Mol. Cell. Biol. 13, 238- 247
  15. Helm, K. W., Lee, G. J., and Vierling, E. (1997) Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 114, 1477-1485 https://doi.org/10.1104/pp.114.4.1477
  16. Joe, M. K., Park, S. M., Lee, Y. S., Hwang, D. S., and Hong, C. B. (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol. Cells 10, 519-524 https://doi.org/10.1007/s10059-000-0519-1
  17. Kim, R., Kim, K. K., Yokota, H., and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. USA 95, 9129-9133
  18. Kim, K. P., Joe, M. K., and Hong, C. B. (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci. 167, 1017-1025 https://doi.org/10.1016/j.plantsci.2004.05.043
  19. Kirschner, M., Winkelhaus, S., Thierfelder, J., and Nover, L. (2000) Transient expression and heat stress induced aggregation of endogenous and heterologous small heat stress proteins in tobacco protoplasts. Plant J. 24, 397-412 https://doi.org/10.1046/j.1365-313x.2000.00887.x
  20. Lee, G. J., Pokala, N., and Vierling, E. (1995) Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270, 10432-10438 https://doi.org/10.1074/jbc.270.18.10432
  21. Lund, A. A., Blum, P. H., Bhattramakki, D., and Elthon, T. E. (1998) Heat-stress responsive of maize mitochondria. Plant Physiol. 116, 1097-1110 https://doi.org/10.1104/pp.116.3.1097
  22. Miernyx, J. A. (1997) The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci. 2, 80-87
  23. Mogelsvang, S. and Simpson, D. J. (1998) Protein folding and transport from the endoplasmic reticulum to the Golgi apparatus in plants. J. Plant Physiol. 153, 1-5
  24. Oh, W. K. and Song, J. (2003) Cooperative interaction of Hsp40 and TPR1 with Hsp70 reverses Hsp70-HspBp1 complex formation. Mol. Cells 16, 84-91
  25. Park, S. M. (2002) Structural and Functional Diversity of Small Heat-Shock Proteins in Nicotiana tabacum. Ph.D. thesis, Seoul National University, Seoul
  26. Plater, M. L., Goode, D., and Crabbe, M. J. C. (1996) Effects of site-directed mutations on the chaperone-like activity of $\alpha$Bcrystallin. J. Biol. Chem. 271, 28558-28566 https://doi.org/10.1074/jbc.271.45.28558
  27. Sambrook, J., Fristsch, E. F., and Maniatis, T. (1989) Molecular cloning; A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  28. Sanger, J., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467
  29. Scharf, K. D., Siddique, M., and Vierling, E. (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 6, 225-237 https://doi.org/10.1379/1466-1268(2001)006<0225:TEFOAT>2.0.CO;2
  30. Schirmer, E. C., Glover, J. R., Singer, M. A., and Lindquist, S. (1996) HSP100/C1p proteins; a common mechanism explains diverse functions. Trend Biochem. Sci. 21, 289-296
  31. Siegler, P. B., Xu, Z., Rye, H. S., Burston, S. G., Fenton, W. A., et al. (1998) Structure and function in GroEL-mediated protein folding. Annu. Rev. Biochem. 67, 581-608 https://doi.org/10.1146/annurev.biochem.67.1.581
  32. Sung, D. Y., Kaplan, F., Lee, K. L., and Guy, C. L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179-187 https://doi.org/10.1016/S1360-1385(03)00047-5
  33. van Montfort, R., Slingsby, C., and Vierling, E. (2002) Structure and function of the small heat shock protein/${\alpha}$-crystalline family of molecular chaperones. Adv. Prot. Chem. 59, 105-156
  34. Vierling, E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579-620 https://doi.org/10.1146/annurev.pp.42.060191.003051
  35. Waters, E. R. (1995) The molecular evolution of the small heatshock proteins in plants. Genetics 141, 785-795
  36. Waters, E. R. and Vierling, E. (1999) Chloroplast small heat shock proteins: evidence for atypical evolution of an organellelocalized protein. Proc. Natl. Acad. Sci. USA 96, 14394-14399
  37. Waters, E. R., Lee, G. J., and Vierling, E. (1996) Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325-338 https://doi.org/10.1093/jxb/47.3.325
  38. Wehmeyer, N., Hernandez, L. D., Finkelstein, R. R., and Vierling, E. (1996) Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 112, 747-757 https://doi.org/10.1104/pp.112.2.747