Comparative Characteristics of Three Human Embryonic Stem Cell Lines

  • Lee, Jung Bok (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital, Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Kim, Jin Mee (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Kim, Sun Jong (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital, Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Park, Jong Hyuk (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Hong, Seok Ho (Department of Obstetrics and Gynecology, Asan Medical Center) ;
  • Roh, Sung Il (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital) ;
  • Kim, Moon Kyoo (Department of Life Science, College of Natural Sciences, Hanyang University) ;
  • Yoon, Hyun Soo (Division of Stem Cell Biology, Medical Research Center, MizMedi Hospital)
  • Received : 2004.08.03
  • Accepted : 2004.09.14
  • Published : 2005.02.28

Abstract

Human embryonic stem (hES) cells have unique features including unlimited growth capacity, expression of specific markers, normal karyotypes and an ability to differentiate. Many investigators have tried to use hES cells for cell-based therapy, but there is little information about the properties of available hES cell lines. We compared the characteristics of three hES cell lines. The expression of SSEA-1, -3, -4, and APase, was examined by immunocytochemistry, and Oct-4 expression was analyzed by RT-PCR. Differentiation of the hES cells in vitro and in vivo led to the formation of embryoid bodies (EBs) or teratomas. We examined the expression of tissue-specific markers in the differentiated cells by semiquantitative RT-PCR, and the ability of each hES cell line to proliferate was measured by flow cytometry of DNA content and ELISA. The three hES cell lines were similar in morphology, marker expression, and teratoma formation. However there were significant differences (P < 0.05) between the differentiated cells formed by the different cell lines in levels of expression of tissue-specific markers such as renin, kallikrein, Glut-2, ${\beta}-$ and ${\delta}-globin$, albumin, and ${\alpha}1-antitrypsin$ (${\alpha}1-AT$). The hES cell lines also differed in proliferative activity. Our observations should be useful in basic and clinical hES cell research.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2003) Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837-.845 https://doi.org/10.1095/biolreprod.103.021147
  2. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., et al. (2001) Insulin production by human embryonic stem cells. Diabetes 50, 1691–.1697 https://doi.org/10.2337/diabetes.50.8.1691
  3. Carpenter, M. K., Inokuma, M. S., Denham, J., Mujtaba, T., Chiu, C. P., et al. (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol. 172, 383-.397 https://doi.org/10.1006/exnr.2001.7766
  4. Carpenter, M. K., Rosler, E. S., Fisk, G. J., Brandenberger, R., Ares, X., et al. (2004) Properties of four human embryonic stem cell lines maintained in a feeder-free culture system. Dev. Dyn. 229, 243-.258 https://doi.org/10.1002/dvdy.10431
  5. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., et al. (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906-.915 https://doi.org/10.1182/blood-2003-03-0832
  6. Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-.156 https://doi.org/10.1038/292154a0
  7. Henderson, J. K., Draper, J. S., Baillie, H. S., Fishel, S., Thomson, J. A., et al. (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stagespecific embryonic antigens. Stem Cells 20, 329-.337 https://doi.org/10.1634/stemcells.20-4-329
  8. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., et al. (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol. Med. 6, 88-.95
  9. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., and Thomson, J. A. (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 98, 10716-.10721
  10. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., et al. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407-.414
  11. Kim, J., Auerbach, J. M., Rodriguez-Goez, J. A., Velasco, I., Gavin, D., et al. (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50-56 https://doi.org/10.1038/nature00900
  12. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., and Langer, R. (2002) Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 4391-4396
  13. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., et al. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733-2740 https://doi.org/10.1161/01.CIR.0000068356.38592.68
  14. Odorico, J. A., Kaufman, D. S., and Thomson, J. A. (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193-204 https://doi.org/10.1634/stemcells.19-3-193
  15. Park, J. H., Kim, S. J., Oh, E. J., Moon, S. Y., Roh, S. I., et al. (2003) Establishment and maintenance of human embryonic stem cells on STO, a permanently growing cell line. Biol. Reprod. 69, 2007-2014 https://doi.org/10.1095/biolreprod.103.017467
  16. Park, J. H., Kim, S. J., Lee, J. B., Song, J. M., Kim, C. G., et al. (2004) Establishment of a human embryonic germ cell line and comparison with mouse and human embryonic stem cells. Mol. Cells 17, 309-315
  17. Rajagopal, J., Anderson, W., Kume, J. S., Martinez, O. I., and Melton, D. A. (2003) Insulin staining of ES cell progeny from insulin uptake. Science 299, 363
  18. Rambhatla, L., Chiu, C. P., Kundu, P., Peng, Y., and Carpenter, M. K. (2003) Generation of hepatocyte-like cells from hu38 Growth and Differentiation Properties of hES Cells man embryonic stem cells. Cell Transplant. 12, 1-11 https://doi.org/10.3727/000000003783985179
  19. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399-404 https://doi.org/10.1038/74447
  20. Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., et al. (2001) Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134-1140 https://doi.org/10.1038/nbt1201-1134
  21. Rosler, E. S., Fiskm, G. J., Ares, X., Irving, J., Miura, T., et al. (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259-274 https://doi.org/10.1002/dvdy.10430
  22. Roy, A., Krzykwa, E., Lemieux, R., and Neron, S. (2001) Increased efficiency of gamma-irradiated versus mitomycin Ctreated feeder cells for the expansion of normal human cells in long-term cultures. J. Hematother. Stem Cell Res. 10, 873-880 https://doi.org/10.1089/152581601317210962
  23. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., and Benvenisty, N. (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11307-11312
  24. Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., et al. (1988) Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688-690 https://doi.org/10.1038/336688a0
  25. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 https://doi.org/10.1126/science.282.5391.1145
  26. Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., et al. (1988) Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684-687 https://doi.org/10.1038/336684a0
  27. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., et al. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971-974 https://doi.org/10.1038/nbt1001-971
  28. Xu, C., Police, S., Rao, N., and Carpenter, M. K. (2002a) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501-508 https://doi.org/10.1161/01.RES.0000035254.80718.91
  29. Xu, R., Chen, X., Lee, D. S., Li, R., Addicks, G. C., et al. (2002b) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261-1264 https://doi.org/10.1038/nbt761
  30. Zeng, X., Miura, T., Lou, Y., Bhattacharya, B., Condie, B., et al. (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292-312 https://doi.org/10.1634/stemcells.22-3-292
  31. Zhang, S., Wernig, M., Duncan, I. D., Brustle, O., and Thomson, J. A. (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129-1133 https://doi.org/10.1038/nbt1201-1129