Expression of γ-Tocopherol Methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Latuca sativa L.)

  • Cho, Eun Ae (Division of Biological Resources Sciences, Chonbuk National University) ;
  • Lee, Chong Ae (Division of Agricultural Biotechnology, Chonbuk National University) ;
  • Kim, Young Soo (Division of Agricultural Biotechnology, Chonbuk National University, Institute of Agricultural Science and Technology, Chonbuk National University) ;
  • Baek, So Hyeon (National Honam Agricultural Experiment Station) ;
  • de los Reyes, Benildo G. (Department of Biological Sciences, University of Maine) ;
  • Yun, Song Joong (Division of Biological Resources Sciences, Chonbuk National University, Institute of Agricultural Science and Technology, Chonbuk National University)
  • Received : 2004.05.30
  • Accepted : 2004.09.16
  • Published : 2005.02.28

Abstract

A cDNA encoding ${\gamma}-tocopherol$ methyltransferase (${\gamma}-TMT$) from Arabidopsis thaliana was overexpressed in lettuce (Latuca sativa L.) to improve the tocopherol composition. Seven lines of lettuce ($T_0$) containing the ${\gamma}-TMT$ transgene were produced by Agrobacterium-mediated transformation. The inheritance and expression of the transgene were confirmed by DNA and RNA gel blot analyses as well as quantification of tocopherols and ${\gamma}-TMT$ activities. The ratio of ${\alpha}-/{\gamma}-tocopherol$ content (TR) varied from 0.6 to 1.2 in non-transformed plants, while the $T_0$ plants had ratios of 0.8 to 320. The ratio ranged from 0.4 to 544 in 41 $T_1$ progenies of the $T_0$ transgenic line gTM3, and the phenotypic segregation indicated monogenic inheritance of the transgene (i.e., 3:1 = dominant:wild-type classes). There was a tight relationship between the TR phenotype and ${\gamma}-TMT$ activity, and enzyme activities were affected by the copy number and transcript levels of the transgene. The TR phenotype was stably expressed in $T_2$ progenies of $T_1$ plants. The results from this study indicated that a stable inheritance and expression of Arabidopsis ${\gamma}-TMT$ transgene in lettuce results in a higher enzyme activity and the conversion of the ${\gamma}-tocopherol$ pool to ${\alpha}-tocopherol$ in transgenic lettuce.

Keywords

Acknowledgement

Supported by : Chonbuk National University

References

  1. Adachi, N., Migita, M., Ohta, T., Higashi, A., and Matsuda, I. (1997) Depressed natural killer cell activity due to decreased natural killer cell population in a vitamin E-deficient patient with Shwachman syndrome: reversible natural killer cell abnormality by alpha-tocopherol supplementation. Eur. J. Pediatr. 156, 444-448 https://doi.org/10.1007/s004310050634
  2. Allshire, R. (2002) RNAi and heterochromatin - a hushed-up affair. Science 297, 1818-1819 https://doi.org/10.1126/science.1075874
  3. Camara, B., Bardat, F., Seye, A., d'Harlingue, A., and Noneger, R. (1982) Terpenoid metabolism in plastids. Localization of $\alpha$-tocopherol synthesis in Capsicum chromoplasts. Plant Physiol. 70, 1562-1563 https://doi.org/10.1104/pp.70.5.1562
  4. Chandler, V. and Vaucheret, H. (2001) Gene activation and gene silencing. Plant Physiol. 125, 145-148 https://doi.org/10.1104/pp.125.1.145
  5. Chung E. C., Seong, E., Kim, Y. C., Chung, E. J., Oh, S. K., et al. (2004) A method of high frequency virus-induced gene silencing in Chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17, 377-380
  6. De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., et al. (2000) Plants as bioreactors for protein production: avoiding the problem of transgene silencing. Plant Mol. Biol. 43, 347-359 https://doi.org/10.1023/A:1006464304199
  7. d'Harlingue, A. and Camara, B. (1985) Plastid enzymes of terpenoid biosynthesis. Purification and characterization of gamma-tocopherol methyltransferase from Capsicum chromoplasts. J. Biol. Chem. 260, 15200-15203
  8. FAOSTAT database. 2003. FAO (http://apps.fao.org/)
  9. Fryer, M. J. (1992) The antioxidant effects of thylakoid vitamin E (${\alpha}$-tocopherol). Plant Cell Environ. 15, 381-392 https://doi.org/10.1111/j.1365-3040.1992.tb00988.x
  10. Goffman, F. D. and Becker, H. C. (2002) Genetic variation of tocopherol content in a germplasm collection of Brassica naptus L. Euphytica 125, 189-196 https://doi.org/10.1023/A:1015858618480
  11. Grusak, M. A. (1999) Genomics-assisted plant improvement to benefit human nutritional health. Trend. Plant Sci. 4, 164-166 https://doi.org/10.1016/S1360-1385(99)01400-4
  12. Hess, J. L. (1993) Vitamin E, $\alpha$-tocopherol; in Antioxidants in Higher Plants, Alscher, R. G. and Hess, J. L. (eds), pp. 111-134. CRC Press, Boca Raton, FL
  13. Hirschberg, J. (1999) Production of high-value compounds:carotenoids and vitamin E. Cur. Opin. Biotech. 10, 186-191 https://doi.org/10.1016/S0958-1669(99)80033-0
  14. Hofius, D. and Sonnewald, U. (2003) Vitamin E biosynthesis:biochemistry meets cell biology. Trends Plant Sci. 8, 6-8 https://doi.org/10.1016/S1360-1385(02)00002-X
  15. Institute of Medicine (IOM) (2000) Dietary Reference Intake for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press, Washington, D.C
  16. Kaeppler, S. M. and Phillips, R. L. (1993) Tissue cultureinduced DNA methylation variation in maize. Proc. Natl. Acad. Sci. USA 90, 8773-8776
  17. Kaeppler, S. M., Kaeppler, H. F., and Rhee, Y. (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol. Biol. 43, 179-188 https://doi.org/10.1023/A:1006423110134
  18. Kamal-Eldin, A. and Appelqvist, L. A. (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671-701 https://doi.org/10.1007/BF02522884
  19. Karp, A. (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85, 295-302 https://doi.org/10.1007/BF00023959
  20. Keegstra, K. and Yousif, A. E. (1986) Isolation and characterization of chloroplast envelope membranes. Methods Enzymol. 118, 316-325 https://doi.org/10.1016/0076-6879(86)18082-7
  21. Kim, M. J., Baek, S. H., Yoo, N. H., and Yun, S. J. (2000) Transformation of Arabidopsis gamma-tocopherol methyltransferase into lettuce (Lactuca sativa L.). Korean J. Plant Tissue Culture 27, 435-439
  22. Koch, M., Lemke, R., Heise, K.-P., and Mock, H.-P. (2003) Characterization of γ-tocopherol methyltransferases from Capsicum annum L and Arabidopsis thaliana. Eur. J. Biochem. 270, 84-92 https://doi.org/10.1046/j.1432-1033.2003.03364.x
  23. Munne-Bosch, S. and Alegre, L. (2000) Changes in carotenoids, tocopherols and diterpenes during drought and recoveryk and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Planta 210, 925-931 https://doi.org/10.1007/s004250050699
  24. Munne-Bosch, S. and Alegre, L. (2002) The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 21, 31-57
  25. Prasad, K. N., Kumar, A., Kochupillai, V., and Cole, W. C. (1999) High doses of multiple antioxidant vitamins: essential ingredients in improving the efficacy of standard cancer therapy. J. Am. College Nutr. 18, 13-25
  26. Pryor, W. A. (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic. Biol. Med. 28, 141-164 https://doi.org/10.1016/S0891-5849(99)00224-5
  27. Roger, S. O. and Bendich, A. J. (1988) Extraction of DNA from plant tissues; in Plant Molecular Biology Manual, Gelvin, S. B., Schilperoort, R. A., and Verma, D. P. S. (eds.), pp. A6,1-10. Kluwer Academic Publishers, Dordrecht
  28. Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., et al. (1997) A controlled trial of selegiline, alphatocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N. Engl. J. Med. 336, 1216-1222 https://doi.org/10.1056/NEJM199704243361704
  29. Sheppard, A. J. and Pennington, A. T. (1993) Analysis and distribution of vitamin E in vegetable oils and foods; in Vitamin E in Health and Disease, Packer, L. and Fuchs, J. (eds.), pp. 9-31, Marcel Dekker, New York
  30. Shintani, D. and DellaPenna, D. (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282, 2098-2100 https://doi.org/10.1126/science.282.5396.2098
  31. Speek, A. J., Schrijver, J., and Schreurs, W. H. P. (1985) Vitamin E composition of some seed oils as determined by highperformance liquid chromatography with fluorometric determination. J. Food Sci. 50, 121-124 https://doi.org/10.1111/j.1365-2621.1985.tb13291.x
  32. Stitt, M. and Sonnewald, U. (1995) Regulation of metabolism in transgenic plants. Ann. Rev. Plant Physiol. Mol. Biol. 46, 341-368 https://doi.org/10.1146/annurev.pp.46.060195.002013
  33. Wolters, A. M. and Visser, R. G. (2000) Gene silencing in potato:allelic differences and effect of ploidy. Plant Mol. Biol. 43, 377-386 https://doi.org/10.1023/A:1006476621946