탄소질 흡착제에 가스 상 분자의 흡착 특성에 대한 이론적 연구

A theoretical study of the adsorption characteristics of gaseous molecules on the carbonaceous adsorbent

  • 투고 : 2005.07.25
  • 심사 : 2005.07.29
  • 발행 : 2005.08.25

초록

본 연구는 흡착제와 기체상 분자의 흡착특성을 연구하기 위하여 탄소질 흡착제의 세공크기 및 흡착 온도와 압력에 따른 기체상 분자들의 흡착용량을 Crand Canonical Monte Carlo(GCMC) 분자모사 방법으로 예측하였다. 사용된 흡착질에 대한 분자구조 및 분자 분광학적 성질에 대해서는 범밀도함수이론(DFT)을 이용하여 계산하였다. 온도에 따른 흡착효과는 온도가 증가할수록 흡착량은 감소하는 경향을 보였으며, 흡착질의 크기, 극성, 그리고 흡착질간의 상호작용 등에 따라서도 흡착효과는 일정한 상관관계를 나타내는 것으로 예측되었다. 본 연구에 사용된 모든 경우에 대하여 탄소질 흡착제에 흡착되는 순서는 $NH_3$ < $H_2S$ < $CH_3SH$ 순으로 예측되었으며, 이러한 이론적 예측은 실험에 의한 관찰 결과와 정성적으로 잘 일치하는 것으로 나타났다.

The adsorption characteristics of gaseous molecules on the carbonaceous adsorbent have been investigated at various temperature and pressure with different pore sizes using Grand Canonical Monte Carlo (GCMC) simulation method. The geometrical parameters and spectroscopic properties of adsorbates have been computed using density functional theory (DFT). At higher temperatures is the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, the adsorption amount of adsorbates on the carbonaceous adsorbent is increased in the order $NH_3$ < $H_2S$ < $CH_3SH$, and this result is qualitatively in good agreement with the experimental observation.

키워드

참고문헌

  1. E. A. Muller, L. F. Rull, L. F. Vega and K. E. Gubbins, 'Adsorption of water on activated carbons, A molecular simulation study', J. Phys. Chem., 100, 1189-1196(1996) https://doi.org/10.1021/jp9519934
  2. C. Nguyen and D. D. Do, 'A new method for the characterization of porous materials', Langmuir. 15(10), 3608-3615(1999) https://doi.org/10.1021/la980732t
  3. P. I. Ravikovitch, A. Vishnyakov, R. Russo and A. V. Neimark, 'Unified approach to pore size characterization of microporous carbonaceous materials from $N_2$, Ar, and $CO_2$ adsorption isotherms', Langmuir. 16(5), 2311-2320(2000) https://doi.org/10.1021/la9817361
  4. C. L. McCallum, T. J. Bandosz, S. C. McGrother, E. A. Muller and K. E. Gubbins, 'A molecular model for adsorption of water on activated carbon, Comparison of simulation and Experiment', Langmuir. 15, 533-544(1999) https://doi.org/10.1021/la9805950
  5. A. N. Sakoda, Oka and M. Suzuki, 'Adsorption of methane onto activated carbon by a graphite clystal aggregate model', Fundamentals of Adsorption, 781-788(1996)
  6. F. Stoeckli, A. Guillot, A. M. Slasli and D. Hugi-Cleary, 'The comparison of experimental and calculated pore size distributions of activated carbons', Carbon, 40, 383-388(2002) https://doi.org/10.1016/S0008-6223(01)00115-4
  7. T. Suzuki, R. Kobori and K. Kaneko, 'Grand canonical Monte Carlo simulation-assisted pore-width determination of molecular sieve carbons by use of ambient temperature $N_2$ adsorption', Carbon, 38, 623-641 (2000) https://doi.org/10.1016/S0008-6223(99)00273-0
  8. M. J. Sanchez-Montero, C. Herdes, F. Salvador and L. F. Vega, 'New insights into absorption isotherm interpretation by a coupled molecular simulation-experimental procedure', Applied Suface Science, in press (2005)
  9. D. D. Do and H. D. Do, 'GCMC-surface area of carbonaceous materials with $N_2$ and Ar adsorption as an alternative to the classical BET method', Carbon, 43, 2112-2121 (2005) https://doi.org/10.1016/j.carbon.2005.03.042
  10. Tomonori Ohba, Takaomi Suzuki and Katsumi Kaneko, 'Relationship between DR-plot and micrdpore width distribution form GCMC simulation', Carbon, 38, 1879-1902(2000) https://doi.org/10.1016/S0008-6223(00)00115-9
  11. James P. Olivier, 'Improving the models used for calculating the size distribution of micropore volume of activated carbon from adsorption data', Carbon, 36, 1469-1472(1998) https://doi.org/10.1016/S0008-6223(98)00139-0
  12. Norihiko Setoyama, Takaomi Suzuki and Katsumi Kaneko, 'Simulation study on the relationship between a high resolution ${\alpha}_5$-plotand the pore size distribution for activated carbon', Carbon, 36, 1459-1467(1998) https://doi.org/10.1016/S0008-6223(98)00138-9
  13. Alejandro Montoya, Fanor Mondragon, Thanh N. Truong, '$CO_2$ adsorption on carbonaceous surfaces: a combined experimental and theoretical study', Carbon, 41, 29-39(2003) https://doi.org/10.1016/S0008-6223(02)00270-1
  14. Gerald H. Lushington, Cary F. Chabalowski, 'Ab initio simulation of physisorption: $N_2$ on pregraphitic clusters', Journal of Molecular Structure (Themchem), 554, 221-235(2001)
  15. C. Bertoncini, J. Raffaelli, L. Fassino, H. S. Odetti and E. J. Bottani, 'Phenol adsorption on porous and nonporous carbon', Carbon, 41, 1101-1111(2003) https://doi.org/10.1016/S0008-6223(02)00270-1
  16. J. F. Espinal, F. Mondragon and T. N. Truong, 'Mechanisms for methane and ethane formation in the reaction of hydrogen with carbonaceous materials', Carbon, 43, 1820-1827(2005) https://doi.org/10.1016/j.carbon.2005.02.010
  17. R. O. Jones and O. Gunnarson, Rev. Mod. Phys., 61, 689(1989) https://doi.org/10.1103/RevModPhys.61.689
  18. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, 'UFF, A full periodic table force field for molecular mechanics and molecular dynamics simulations', J. Am. Chem. Soc., 114, 10024-10035( 1992) https://doi.org/10.1021/ja00051a040
  19. S. L. Mayo, B. O. Olafson and W. A. Goddard III, 'Dreiding, A generic force field for morecluar simulations', J. Phys. Chem., 94, 8897-8909(1990) https://doi.org/10.1021/j100389a010
  20. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, J. Comput. Chem., 4, 187-217(1983) https://doi.org/10.1002/jcc.540040211
  21. G. Herzberg, 'Electronic spectra of polyatomic molecules', Van Nostrand Reinhold Company (1966)
  22. C. R. Kim, C. H. Shin, M. W. Seo, J. Y. Kim, Y. H. Kim and K. H. Lee, 'Adsorption characteristics of ammonia, hydrogen sulfide and methylmercaptan on activated carbons with different pH', Journal of the Korea Society of Tobacco Science, 19(1), 46-50(1997)
  23. Svetlana Bashkova, Andrey Bagreev, Teresa J. Bandosz, 'Catalytic properties of activated carbon surface in the process of adsorption/oxidation of methyl mercaptan', Catalysis Today, 99, 323-328 (2005) https://doi.org/10.1016/j.cattod.2004.09.028
  24. W. Adamson, John Wiley & Sons, Physical Chemistry of Surfaces, 4th edition (1982)