Study in the Measurement of Boron Isotopes by Thermal Ionization Mass Spectrometer

열 이온화 질량분석기를 이용한 보론 동위원소 비 측정연구

  • Jeon, Young Shin (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Joe, Kih Soo (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Han, Sun Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Yong Joon (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Jee, Kwang Yong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • 전영신 (한국원자력연구소, 원자력화학연구부) ;
  • 조기수 (한국원자력연구소, 원자력화학연구부) ;
  • 한선호 (한국원자력연구소, 원자력화학연구부) ;
  • 박용준 (한국원자력연구소, 원자력화학연구부) ;
  • 지광용 (한국원자력연구소, 원자력화학연구부)
  • Received : 2004.10.13
  • Accepted : 2004.11.16
  • Published : 2005.02.25

Abstract

$Li_2B_4O_7$ and $Na_2B_4O_7$ were synthesized with boron isotopic standard material for the measurement of boron isotopes of positive ions (PTIMS) such as $Li_2BO_2{^+}$ (mass 56, 57) and $Na_2BO_2{^+}$ (mass 88, 89) instead of boron mass 10 and 11. The negative ions (NTIMS) such as $^{10}BO_2{^-}$ and $^{11}BO_2{^-}$(mass 42와 43) were also measured with the same boron isotopic standard material. The precision and accuracy were compared between each method, and prescan of isobaric effect was studied. Good result was obtained from NTIMS method which provided the stable and enough peak intensities with good precision and accuracy. The measurement of boron isotopes were performed in ground water sample with about 8 ng-B ($5{\mu}L$ sample solution) obtained from IAEA for international inter-comparison analysis. The standard deviation was found to be 0.03%. Boron content of this ground water was measured using the NTIMS-IDMS. The result was $1.65{\pm}0.003ug-B/mL$ which was better precision compared to the ICP-AES result.

보론 동위원소 표준물을 이용하여 $Li_2B_4O_7$$Na_2B_4O_7$를 합성하고 이로부터 $Li_2BO_2{^+}$ (질량 56, 57)와 $Na_2BO_2{^+}$ (질량 88, 89)를 열 이온화 질량분석기를 이용하여 양이온 질량분석법(PTIMS)으로 측정하였으며 또한 같은 시료를 음이온 질량분석법 (NTIMS)으로 $^{10}BO_2{^-}$$^{11}BO_2{^-}$ (질량 42와 43)를 보론 (질량 10, 11)대신 측정하였다. 이들 방법 간의 정밀도와 정확도를 비교하고, 각각의 방법에서 동중원소 영향이 있는지를 알아보았다. 세 가지 방법 중에 NTIMS 방법이 제일 좋은 결과를 보여주었으며 작은 시료 양으로도 안정된 피크를 얻을 수 있었다. NTIMS 방법으로 지하수 약 $5{\mu}L$(약 8 ng-B)를 직접시료로 사용하여 보론 동위원소 비를 측정하여 상대 표준편차 0.03%의 결과를 얻었다. 또한 NTIMS-IDMS로 보론을 정량한 결과 $1.65{\pm}0.003{\mu}g-B/mL$을 얻었으며 ICP-AES 결과에 비해 좋은 정밀도를 보였다.

Keywords

References

  1. P. De Bievre and P.D.P Taylor, Int. J. Mass Spectrom, Ion Processes, 123, 149(1993) https://doi.org/10.1016/0168-1176(93)87009-H
  2. K. E. Grilchrist, S. D. Preston, High-Temp. High-Press., 11, 643(1979)
  3. Vengosh, A., Heumann, K. G., Juraske, S., Kasher, R., Environ. Sci. Technol. 28, 1968-1974(1994) https://doi.org/10.1021/es00060a030
  4. Bassett R. L., Buszka, P. M.,., Davidson, G. R., Chong-Diaz, D., Environ. Sci. Technol. 29, 2915-2922(1995) https://doi.org/10.1021/es00012a005
  5. Barth, S. Water Res. 32, 685-690(1998) https://doi.org/10.1016/S0043-1354(97)00251-0
  6. H. Hatanaka, K. Sano, H. Yasukochi, Progress in Neutron Capture Therapy for Cancer, Plenum Press, New York, 561-568(1992)
  7. R. Zamenhof, E. Redmond H, G. Solares, D. Katz, K. Riley, S. Kiger, O. harling, Int. J. radiat. Oncol. Biol. Phys. 35(2), 383(1996) https://doi.org/10.1016/0360-3016(96)00084-3
  8. Buchar, E.; Bedna, S.; Gruner, B.; Walder, P.; Strouf, O.; Janku,I., Cancer Chemother. Pharmacol. 29, 450-454(1992) https://doi.org/10.1007/BF00684846
  9. Laramore G. E., Wootton, P., Livesey J. C., Wilbur D. S., Risler R., Phillips M., Jacky J. Bucholtz T. A., Griffin T. W., Brossard S, Int. J. Rad. Onc. Bio. Phys., 28 1135-1142(1994) https://doi.org/10.1016/0360-3016(94)90487-1
  10. Sodium in Patients with Malignent Brain Tumors, Int. J. radiat. Oncol. Biol.Phys. 41(3), 631-638 (1998) https://doi.org/10.1016/S0360-3016(98)00069-8
  11. B. Larsson, Advances in Neutron Capture Therapy, Vol.1, Elsevier, Amsterdam, 39-45(1977)
  12. Spivak, A.; Admond, J. M., Anal. Chem., 58, 31-35(1986) https://doi.org/10.1021/ac00292a010
  13. Michiels, E.; de Bievre, P., Int. J. Mass Spectrom. Ion Phys., 12, 265-272(1973) https://doi.org/10.1016/0020-7381(73)80043-9
  14. Lui-Heung chan, Litium Isotope Analysis by TIMS of Lithium Tetraborate, Anal. Chem., 59, 2662-2665(1987) https://doi.org/10.1021/ac00149a007
  15. Duchateau, N. L., De Bievre, P., Int. J. Mass Spectrom. Ion Phys., 54, 289-297(1983) https://doi.org/10.1016/0168-1176(83)80017-2
  16. Zeininger, H., Heumann, K. G., Int. J. Mass Spectrom. Ion Phys., 48, 377-380(1983) https://doi.org/10.1016/0020-7381(83)87106-X
  17. Heumann, K. G., Zeininger, H. Int. J. Mass Spectrom. Ion Phys., 67, 237(1985) https://doi.org/10.1016/0168-1176(85)80022-7
  18. S. Barth, Chem. Geol., 143, 255(1997) https://doi.org/10.1016/S0009-2541(97)00107-1
  19. N. G. Hemming, G. N. Hanson, Chem. Geol., 114, 147(1994) https://doi.org/10.1016/0009-2541(94)90048-5
  20. Arthur, M. A. Anderson, T. F., Kaoian, I. R., Velzer, J. Land, L. S., SEPM Short Course No. 10, Dallas, Ch. 1(1983)
  21. 조기수, 최광순, 한선호, 서무열, 전영신, 최계천, 김 영복, 김종구, 김원호, IAEA 지하수성분분석 비교시험, KAERI/TR-2566, 9(2003)