Identification of True Full Sib Progenies of Japanese Red Pine via cpSSR Haplotyping

cpSSR haplotype에 근거한 소나무 전형매차대목(全兄妹次代木) 검정(檢定)

  • Hong, Yong-Pyo (Division of Forest Genetic Resources, Korea Forestry Research Institute) ;
  • Kwon, Hae-Yun (Division of Forest Genetic Resources, Korea Forestry Research Institute) ;
  • Han, Sang-Urk (Division of Forest Genetic Resources, Korea Forestry Research Institute) ;
  • Choi, Wan-Yong (Division of Forest Genetic Resources, Korea Forestry Research Institute) ;
  • Kim, Yong-Yul (Division of Forest Genetic Resources, Korea Forestry Research Institute)
  • 홍용표 (국립산림과학원 산림유전자원부) ;
  • 권해연 (국립산림과학원 산림유전자원부) ;
  • 한상억 (국립산림과학원 산림유전자원부) ;
  • 최완용 (국립산림과학원 산림유전자원부) ;
  • 김용율 (국립산림과학원 산림유전자원부)
  • Received : 2005.03.16
  • Accepted : 2005.04.18
  • Published : 2005.06.30

Abstract

To identify the seedlings from controlled pollination between one paternal tree and three maternal trees of Japanese red pine, cpSSR markers of the paternally inherited haploid genome were analyzed in two year old 114 seedlings of full sib families. Individual specific DNA fingerprint like haplotypes of the parental trees were determined by PCR with three cpSSR primers. Haplotypes of the 114 seedlings were also identified by PCR with the same primers. On the basis of the comparison of cpDNA haplotypes of the 114 seedlings with those of the parental trees, 14 seedlings revealed to have distinguished haplotypes from those of the paternal tree. It was tentatively concluded that they were generated via pollination with the non-paternal trees. A seedling of Gangwon30 revealing non-paternal haplotype might have been generated via self pollination with the pollens of maternal tree through improper emasculation or contamination during artificial pollination. DNA fingerprint like cpSSR profiles observed in this study could be successfully applied to the various plant forensic analyses, such as identification of siblings of individual trees, asexually reproduced ramets of a specific clone, vegetatively propagated individuals via tissue culture, and pure full sib progenies.

소나무의 2년생 인공교배(人工交配) 전형매차대목(全兄妹次代木) 114개체를 대상으로 화분친(花粉親)이 아닌 개체의 화분에 의해 생성된 차대목(次代木)을 식별하기 위하여 부계유전(父系遺傳)되는 반수체(半數體) 표지자인 cpSSR 표지자 분석을 실시하였다. 3개의 cpSSR primer를 이용한 PCR 분석을 통하여 화분친(花粉親)과 3개 모수(母樹)의 haplotype 조합을 결정하고, 이에 의해 각 개체의 DNA 지문이 확인되었다. 동일한 cpSSR primer를 사용하여 전형매차대(全兄妹次代) 114개 개체목의 haplotype을 확인하고 이를 화분친(花粉親) 및 3개 모수(母樹)에서 확인된 haplotype 조합과 비교한 결과, 이들 중 14개체에서 인공교배(人工交配) 화분친(花粉親)과 다른 cpDNA haplotype이 확인되어 이들이 교배에 사용된 화분친(花粉親)이 아닌 타개체로부터 유입된 화분에 의해서 생성된 개체로 동정되었다. 특히, 강원30으로부터 생산된 차대(次代) 중 한 개체목은 불완전한 제웅(除雄)이나 인공교배(人工交配)시 모수(母樹)에서 생산된 화분의 유입으로 인해서 야기된 자가교배(自家交配)에 의해서 생성되었을 가능성이 매우 높은 것으로 나타났다. 본 연구에서 분석된 cpSSR 지문분석은 향후 자연림내 친계차대목(親系次代木) 감별과 삽목, 접목 및 조직배양에 의한 무성번식묘(無性繁殖苗)의 동정, 순수(純粹) 전형매차대(全兄妹次代)의 확인 등 식물법의학적(植物法醫學的) 분석법(分析法)에 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. 김영중, 송정호, 조경진, 김용율, 구영본. 2002. 準人工交配에 의한 리기다$\times$테다 소나무 집종종자 大量生産과 雌花芽의 生長特性. 한국육종학회지 34(3) : 228-235
  2. 한상돈, 홍용표, 양병훈, 이석우, 김찬수 2004. 주왕산 소나무 집단의 교배양식 모수 추정. 한국임학회 정기 총회 및 학술발표회 자료집. pp. 315-316
  3. Anzidei, M.m A. Madaghiele, C. Sperisen, B. Ziegenhagen, and GG Vendramin. 1999. Chloroplast micro satellites for analysis of the geographic distribution of diversity in conifer species. In: Gillet, E.M. (ed.). Which DNA Marker for Which Purpose? Final Compendium of the Research Project Development, optimization and validation of molecular tools for assessment of biodiversity in forest trees in the European Union DGXII Biotechnology FW IV Research Programme Molecular Tools for Biodiversity. URL http:// webdoc.sub.gwdg.de/ebook/y/1999/whichmarker/index.htm
  4. Dow, B.D. and M.Y. Ashley. 1998. Factors influencing male mating success in bur oak, Quercus macrocarpa. New Forest 15 : 161-180 https://doi.org/10.1023/A:1006557904751
  5. Echt, C.S., L.L. DeVerno, M. Anzidei, and G.G Vendramin. 1999. Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Molecular Ecology 7: 307-316 https://doi.org/10.1046/j.1365-294X.1998.00350.x
  6. Gragg, H., B.D. Harfe, and S. Jinks-Robertson. 2002. Base composition of mononucleotide runs affects DNA polymerase slippage and removal of frameshift intermediates by mismatch repair in Saccharomyces cerevisiae. Molecular and Cellular Biology 22(24) : 8756-8762 https://doi.org/10.1128/MCB.22.24.8756-8762.2002
  7. Iketani, H., T. Manabe, N. Matsuta, T. Akihama, and T. Hayashi. 1998. Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genetic Resources and Crop Evolution 45(6) : 533-539 https://doi.org/10.1023/A:1008646016181
  8. Lee, S.W., S.S. Jang, K.H. Jang, and C.S. Kim. 2003. Estimation of mating system parameters in the natural population of Pinus densiflora of Anmyun island, Korea using allozyme markers. Journal of Korean Forestry Society 92(2); 121-128
  9. Lian, C., M. Miwa, and T. Hogetsu. 2001. Outcrossing and paternity analysis of Pinus densiflora(Japanese red pine) by microsatellite polymorphism. Heredity 87: 88-98 https://doi.org/10.1046/j.1365-2540.2001.00913.x
  10. Morgante, M., N. Felice, and G.G Vendramin. 1997. Analysis of hypervariable chloroplast microsatellite in Pinus halepensis reveals a dramatic genetic bottleneck. In: Karp, A., P.O. Issac, and D.S. Ingrams.(eds.). Molecular Tools for Screening Biodiversity. pp.407-412
  11. Noh, E.W, J.S. Lee, Y.I. Choi, M.S. Han, YS. Yi, and S.u. Han. 2003. Pinus koraiensis chloroplast, complete genome. $gi\left|29565556\left|ref\left|-NC$_ 004677.11[16975]
  12. Powell, W, G. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1 : 215-222 https://doi.org/10.1016/S1360-1385(96)86898-0
  13. Provan, J., N. Soranzo, N.J. Wilson, D.B. Goldstein, and W Powell. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153 : 943-947
  14. Robledo-Amuncio, J.J. and L. Gil. 2005. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total-exclusion paternity analysis. Heredity 94 : 13-22 https://doi.org/10.1038/sj.hdy.6800542
  15. Sigurgeirsson, A and A.E. Szmidt. 1993. Phylogenetic and biogeographic implications of chloroplast DNA variation in Picea. Nordic Journal of Botany 13 : 233-246 https://doi.org/10.1111/j.1756-1051.1993.tb00043.x
  16. Streiff, R., A. Ducousso, C. Lexer, H. Steinkellner, J. Gloessl, and A. Kremer. 1999. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus rubur L. and Q. petraea (Matt.) Liebl. Molecular Ecology 8 : 831-841 https://doi.org/10.1046/j.1365-294X.1999.00637.x
  17. Tautz, D. 1993. Notes on the definition and nomenclature of tandetnly repetitive DNA sequences. In: Pena S.D.J., R. Chakraborty, 1.T. Epplen, and A.J. Jeffreys (eds.). DNA Fingerprinting: State of the Science. Birkhauser Verlag, Basel, Switzerland, pp. 21-28
  18. Vendramin GG, L. Lelli, P. Rossi, and M. Morgante. 1996. A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molecular Ecology 5: 111-114
  19. Wakasugi T., J. Tsudzuki, S. Ito, M. Shibata, and M. Sug- iura. 1994. A physical map and clone bank of the black pine (Pinus thunbergii) chloroplast genome. Plant Molecular Biology Report 12: 227-241 https://doi.org/10.1007/BF02668746
  20. Walter, R. and B.K. Epperson. 2001. Geographical pattern of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of post glacial populations. Molecular Ecology 10 : 103-111 https://doi.org/10.1046/j.1365-294X.2001.01177.x
  21. Wang, X.-R. and A Szrnidt. 1993. Chloroplast DNAbased phylogeny of Asian Pinus species. Plant Systematics and Evolution 188 : 197-211 https://doi.org/10.1007/BF00937728
  22. Wang, X.-R., A.E. Szmidt, and H.N. Nguyen. 2000. The phylogenetic position of the endemic flat-needle pine Pinus krempfii (Lee., Pinaceae) from Vietnam, based on PCR-RFLP analysis of chloroplast DNA. Plant Systematics and Evolution 220: 21-36 https://doi.org/10.1007/BF00985368
  23. Wolfe, K.H., WH. Li, and P.M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast and nuclear DNA. Proceedings of National Academy of Sciences USA 84 : 9054-9058