Effects of Seeding Microorganisms, Hydrazine, and Nitrite Concentration on the Anammox Activity

혐기성 암모늄 산화균의 활성에 대한 식종미생물, 히드라진 및 아질산성 질소 농도의 영향

  • Jung, Jin-Young (Water Environment & Remediation Research Center, KIST) ;
  • Kang, Shin-Hyun (Water Environment & Remediation Research Center, KIST) ;
  • Kim, Young-O (Water Environment & Remediation Research Center, KIST) ;
  • Chung, Yun-Chul (Water Environment & Remediation Research Center, KIST)
  • 정진영 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 강신현 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 김영오 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 정윤철 (한국과학기술연구원 수질환경 및 복원연구센터)
  • Received : 2005.03.15
  • Accepted : 2005.05.17
  • Published : 2005.09.30

Abstract

Anammox (Anaerobic Ammonium Oxidation) bacteria is recently discovered microorganism which can oxidize ammonium to nitrogen gas in the presence of nitrite under anaerobic conditions. The anammox process can save an energy for nitrification and need not require a carbon source for denitrification, however, the start-up periods takes a long time more than several months due to the long doubling time (approximately 11 days). In order to find the effects of seeding microorganisms, hydrazine, and nitrite concentration on the enhancement of the anammox activity, five kinds of microorganisms were selected. Among the several kinds of seeding microorganisms, the granule from acclimated microorganisms treating high concentration of ammonia nitrogen (A-1) and sludge from piggery wastewater treatment plant (A-2) were found to have a high anammox activity. In the case of A-1, the maximum nitrogen conversion rate represented 0.4 mg N/L-hr, and the amount of nitrite utilization was high compared to those of other seeding microorganisms. The A-4 represented a higher nitrogen conversion rate to 0.7 mg N/L-hr although the ammonium concentration in the serum bottle was high as 200 mg/L. Meanwhile, the anaerobic granule from UASB reactor treating distillery wastewater showed a low anammox activity due to the denitrification by the remained carbon sources in the granule. Hydrazine, intermediate product in anammox reaction, enhanced the anammox activity by representing 1.4 times of nitrogen gas was produced in the test bottle than that of control, when 0.4 mM of $N_2H_4$ was added to serum bottle which contains 5 mM of nitrite. The high concentration of nitrite (10 mM) resulted in the decrease of the anammox activity by showing lower production of nitrogen gas compared to that of 5 mM addition of nitrite concentration. As a result of FISH (Florescence In-Situ Hybridization) experiment, the Amx820 probe showed a more than 13% of anammox bacteria in a granule (A-1).

Keywords

Acknowledgement

Supported by : 환경부

References

  1. 김영오, 박태주, 이태호, In situ 측정기법을 이용한 호기성 고정생물막의 형상 변화와 미생물 활성 및 분포 해석, 대한환경공학회지, 26, pp. 566-572 (2004)
  2. 이진우, 김희철, 권수열, 안영호, 독립영양 질소제거 미생물의 입상화 및 군집특성, 대한환경공학회지, 26, pp. 1109-1115 (2004)
  3. Broda, E., Two Kinds of Lithotrophs Missing in Nature, Z. Allg. Mikrobiol., 17, pp. 491-493 (1977) https://doi.org/10.1002/jobm.3630170611
  4. Jetten, M. S. M., Strous, M., Van de Pas-Schoonen, K. T., Schalk, J., Van Dongen, U. G. J. M., Van de Graaf, A. A., Logemann, S., Muyzer, G., Van Loosdrecht, M. C. M. and Kuenen, J. G., The Anaerobic Oxidation of Ammonium, FEMS Microhiol. Rev., 22, pp. 421-437 (1999)
  5. Jetten, M. S. M., New Pathways for Ammonia Conversion in Soil and Aquatic System, Plant and Soil, 230, pp. 9-19 (2001) https://doi.org/10.1023/A:1004683807250
  6. Jetten, M. S. M., Sliekers, O., Kuypers, M., Dalsgaard, T., Van Niftrik, L., Cirpus, I., Van de Pas-Schoonen, K., Lavik, G., Thamdrup, B., Le Paslier, D., Op den Camp, H. J., Hulth, S., Nielsen, L. P., Abma, W., Third, K., Engstrom, P., Kuenell, J. G., Jorgensen, B. B., Canfield, D. E., Sinninghe Damste, J. S., Revsbech, N. P., Fuerst, J., Weissenbach, J., Wagner, M., Schmidt, I., Schmid, M. and Strous, M., Anaerobic Ammonium Oxidation by Marine and Freshwater Planclomycete-like Bacleria, Appl. Envrion. Microbiol., 63, pp. 107-114 (2003)
  7. Kuenen, J. G. and Jetten, M. S. M., Extraordinary Anaerobic Ammonium Oxidizing Bacteria, Am. Soc. Microbial. News, 67, pp. 456-463 (2001)
  8. Mulder, A., Van de Graaf, A. A., Robertson, L. A. and Kuenen, J. G., Anaerobic Ammonim Oxidation Discovered in a Denitrifying Fluidized Bed Reactor, FEMS Microbial. Ecol., 16, pp. 177-184 (1995) https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  9. Strous, M., Heijnen, J. J., Kuenen, J. G. and Jetten, M. S. M., The Sequencing Batch Reactor as a Powerful Tool to Study Very Slowly Growing Microorganisms, Appl. Microbial. Biotechnol., 50, pp. 589-596 (1998). https://doi.org/10.1007/s002530051340
  10. Strous, M., Kuenen, J. G. and Jetten, M. S. M., Key Physiology of Anaerobic Ammonium Oxidation, Appl. Envrion. Microbiol., 65, pp. 3248-3250 (1999)
  11. Thamdrup, B. and Dalsgaard, T., Production of N$_{2}$ through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments, Appl. Envrion. Microbial., 68, pp. 1312-1318 (2002). https://doi.org/10.1128/AEM.68.3.1312-1318.2002
  12. Van de Graaf, A. A., De Bruijn, P., Robertson, L. A., Jetten, M. S. M. and Kuenen, J. G., Autotrophic Growth of Anaerobic, Ammonium-oxidizing Microorganisms in a Fluidized Bed Reactor, Microbiology, 142, pp. 2187-2196 (1996). https://doi.org/10.1099/13500872-142-8-2187