참고문헌
- Andersson, J., Axsater, S., and Marklund, J. (1998),Decentralized multi-echelon inventory control, Production and Operations Management, 7(4), 370-386 https://doi.org/10.1111/j.1937-5956.1998.tb00130.x
- Axsater, S. (2001), A framework for decentralized multi-echelon inventorycontrol, lIE Transactions, 33(2), 91-97
- Azoury, K. (1985), Bayes solution to dynamic inventory models under unknown demand distribution, Management Science 31(9),1150-1160 https://doi.org/10.1287/mnsc.31.9.1150
- Brown, R.G. (1962), Smoothing, Forecasting, and Prediction of Discrete Time Series, Prentice-Hall
- Cachon, G. and Fisher, M. (2000), Supply chain inventory management andthge value of shared information, Management Science, 46(8), 1032-1048 https://doi.org/10.1287/mnsc.46.8.1032.12029
- Cachon, G. and Zipkin,P. H. (1999), Competitive and cooperative inventory policies in a two stage supply chain, Management Science, 45(7), 936-953 https://doi.org/10.1287/mnsc.45.7.936
- Corbett,L. M. (1992), Deliverywindows a new view on improving manufacturing flexibility and on-time delivery performance, Production andInventory Management, 33(3), 74-79
- Gavimeni, S., Kapuscinski, R., and Tayur, S. (1999), Value of information in capacitated supplychains, Management Science, 45(1), 16-24 https://doi.org/10.1287/mnsc.45.1.16
- Lee, H. and Whang, S. (1999), Decentralized multi-echelon supply chains: incentives and information, Management Science, 45(5),633-640 https://doi.org/10.1287/mnsc.45.5.633
- Lee, H. L., So, K. C., and Tang, C. S. (2000), The value of information sharing in a two-level supply chain, Management Science, 46(5),626-643 https://doi.org/10.1287/mnsc.46.5.626.12047
- Miller, B.L. (1986), Scarf's state reductionmethod, flexibility, and a dependent demand inventory model, Operations Research, 34(1), 83- 90 https://doi.org/10.1287/opre.34.1.83
- Moinzadeh, K. (2002), A multi-echelon inventory system with information exchange, Management Science, 48(3), 414-426 https://doi.org/10.1287/mnsc.48.3.414.7730
- Packer, A. H. (1967), Simulation and adaptive forecasting as applied to inventory control, Operations Research, 15, 660-679 https://doi.org/10.1287/opre.15.4.660
- Scarf,H. (1959), Someremarkson Bayes solutionto the inventory problem, Naval Research Logistics Quarterly, 7, 591-596 https://doi.org/10.1002/nav.3800070428
- Souza, R. D., Zice, S., and Chaoyang, L. (2000), Supply chain dynamics and optimization, Integrated Manufacturing Systems, 11(5),348-364 https://doi.org/10.1108/09576060010335627
- Sutton, R. S. and Barto, A. G. (1998), Reinforcement Learning, MIT Press
- Trigg,D.W. and Leach, A.G. (1967), Exponential smoothing with an adaptive response rate, Operational Research Quarterly, 18(1),53-59 https://doi.org/10.1057/jors.1967.5
- Waller, M., Johnson, M. E., and Davis, T. (1999), Vendormanaged inventory in the retail supply chain, Journal of Business Logistics, 20(1), 183-203
- Zhao, X. and Xie, J. (2002), Forecasting errors and the value of information sharing in a supply chain, International Journal of Production Research, 40(2), 311-335 https://doi.org/10.1080/00207540110079121
- Zhao, X., Xie, J., and Lau, R. S. M. (2001), Improving the supply chain performance: use of forecasting models versus early order commitments, International Journal of Production Research, 39(17), 3923-3939 https://doi.org/10.1080/00207540110072236