금속 산화물에 플루오르화 카르복시산을 흡착시킨 소수성 표면의 제조

The Production of Hydrophobic Surfaces by the Adsorption of Perfluorocarboxylic Acids onto Metal Oxides

  • 하기룡 (계명대학교 공과대학 화학공학과) ;
  • 이명희 (한국생산기술연구원 섬유환경분석실) ;
  • 정진갑 (계명대학교 자연과학대학 화학과)
  • Ha, Ki Ryong (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Myunghee (Textile Ecology Laboratory, Korea Institute of Industrial Technology) ;
  • Chung, Chinkap (Department of Chemistry, Keimyung University)
  • 투고 : 2005.03.21
  • 심사 : 2005.05.27
  • 발행 : 2005.08.10

초록

몇 가지 금속 산화물에 플루오르르 치환된 카르복시산의 자기조립박막을 제조하였다. 사슬 길이의 영향을 비교하기 위하여 퍼플루오르도테칸 산과 퍼플루오르옥타데칸 산을 사용하였다. 사용된 금속 산화물은 알루미나, 탄탈리아, 티타니아, 지르코니아였다. 자기조립박막의 형성은 DRIFT (Diffuse Reflectance Infrared Fourier Transform) 분광법으로 확인하였다. 퍼플루오르탄화수소는 소수성을 가지므로 형성된 자기조립박막도 소수성을 지닐 것으로 예측된다. 형성된 자기조립박막의 DRIFT 스펙트럼의 품질은 금속산화물의 성분 원소뿐만 아니라 분말으 크기에 따라서도 달라졌다.

The self-assembled monolayers (SAMs) of perfluorocarboxylic acids were fabricated on several metal oxide powders. Perfluorododecanoic acid and perfluorooctadecanoic acid were used to study the effect of chain length on SAM. Alumina, Tantalia, Titania, and Zirconia were the metal powders used. The formation of the SAMs was confirmed by DRIFT(Diffuse Reflectance Infrared Fourier Transform) spectroscopy. Since the perfluorohydrocarbons are well known for their hydrophobicity, the resulting monolayers are also expected to have high hydrophobicity. The quality of DRIFT spectra of SAMs was dependent on the powder size as well as the element of metal oxides.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. F. Schreiber, Progress in Surface Sci., 65, 151 (2000) https://doi.org/10.1016/S0079-6816(00)00024-1
  2. R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc., 105, 4481 (1983) https://doi.org/10.1021/ja00351a063
  3. P. W. Hoffmann, M. Stelzle, and J. F. Rabolt, Langmuir, 13, 1877 (1997) https://doi.org/10.1021/la961091+
  4. O. Klug and W. Forsling, Langmuir, 15, 6961 (1999) https://doi.org/10.1021/la990105j
  5. P. J. Thistlethwaite and M. S. Hook, Langmuir, 16, 4993 (2000) https://doi.org/10.1021/la991514i
  6. M. E. Karaman, D. A. Antelmi, and R. M. Pashley, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 182, 285 (2001) https://doi.org/10.1016/S0927-7757(00)00821-9
  7. S. Wu, Polymer Interface and Adhesion, pp. 179, Marcel Dekker, Inc. (1982)
  8. A. Ulman, An introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, Academic Press, New York (1991)
  9. K. D. Dobson and A. J. McQuillan, Langmuir, 13, 3392 (1997) https://doi.org/10.1021/la962024i
  10. A. Ulman, J. F. Kang, Y. Shnidman, S. Liao, R. Jordan, G.-Y. Choi, .I. Zaccaro, A. S. Myerson, M. Rafailovich, J. Sokolov, and C. Fleischer, Reviews in Molecular Biotechnology, 74, 175 (2000) https://doi.org/10.1016/S1389-0352(00)00013-1
  11. N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to infrared and Raman Spectroscopy, Academic Press, New York (1990)
  12. B. Smith, Infrared Spectral Interpretation; A Systematic Approach, CRC Press (1999)
  13. Y. T. Tao, J. Am. Chem. Soc., 115, 4350 (1993) https://doi.org/10.1021/ja00063a062
  14. S. J. Lee and K. Kim, Vib. Spectrosc., 18, 187 (1998) https://doi.org/10.1016/S0924-2031(98)00086-1
  15. K. D. Dobson and A. J. McQuillan, Spectrochimica Acta Part A, 55, 1395 (1999) https://doi.org/10.1016/S1386-1425(98)00303-5
  16. G. Roberts, Langmuir-Blodgett Films, Plenwn Press, New York (1990)