Identification of Genes Differentially Expressed in Wild Type and Purkinje Cell Degeneration Mice

  • Xiao, Rui (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University) ;
  • Park, Youngsook (Department of Animal Biotechnology, Cheju National University) ;
  • Dirisala, Vijaya R. (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University) ;
  • Zhang, Ya-Ping (Kunming Institute of Zoology, the Chinese Academy of Sciences) ;
  • Um, Sang June (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University) ;
  • Lee, Hoon Taek (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University) ;
  • Park, Chankyu (Department of Animal Biotechnology, Bio-Organ Research Center/Institute of Biomedical Science and Technology, Konkuk University)
  • Received : 2005.04.18
  • Accepted : 2005.05.25
  • Published : 2005.10.31

Abstract

Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin-28k, paravalbumin, matrix gamma-carboxyglutamate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal $Ca^{2+}$ signaling in the pcd phenotype.

Keywords

Acknowledgement

Supported by : Konkuk University

References

  1. Ahmad-Annuar, A., Tabrizi, S. J., and Fisher, E. M. C. (2003) Mouse models as a tool for understanding neurodegenerative diseases. Curr. Opin. Neurol. 16, 451−455 https://doi.org/10.1097/00019052-200308000-00002
  2. Al-Shahrour, F., Diaz-Uriarte, R., and Dopazo, J. (2004) FatiGO: a web tool for finding significant associations of gene ontology terms with groups of genes. Bioinformatics 20, 578−580 https://doi.org/10.1093/bioinformatics/btg455
  3. Aruga, J. (2004) The role of Zic genes in neuronal development. Mol. Cell. Neurosci. 26, 205−221 https://doi.org/10.1016/j.mcn.2004.01.004
  4. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., et al. (2000) Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25−29 https://doi.org/10.1038/75556
  5. Aktas O., Smorodchenko, A., Brocke, S., Infante-Duarte, C., Topphoff, U., et al. (2005) Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron 46, 421−432 https://doi.org/10.1016/j.neuron.2005.03.018
  6. Bagala, C., Kolev, V., Mandinova, A., Soldi, R., Mouta, C., et al. (2003) The alteration translation of synaptotagmin 1 mediates the non-classical release of FGF1. Biochem. Biophys. Res. Commun. 310, 1041−1047 https://doi.org/10.1016/j.bbrc.2003.09.119
  7. Barlow, C. and Lockhart, D. J. (2002) DNA arrays and neurobiology - what's new and what's next. Curr. Opin. Neurobiol. 12, 554−561 https://doi.org/10.1016/S0959-4388(02)00353-7
  8. Bastianelli, E. (2003) Distribution of calcium-binding proteins in the cerebellum. The Cerebellum 2, 242−262 https://doi.org/10.1080/14734220309424
  9. Caillard, O., Moreno, H., Schwaller, B., Llanoe, I., Celio, M. R., et al. (2000) Role of the calcium-binding protein pavalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. USA 97, 13372−13377
  10. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156−159
  11. Churchill, G. A. (2002) Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32(Suppl.), 490−495 https://doi.org/10.1038/ng1031
  12. Clowry, G. J. and McHanwell, S. (2004) Brainstem motor nuclei respond differentially to degenerative disease in the mutant mouse wobbler. Neuropathol. Appl. Neurobiol. 30, 148−160 https://doi.org/10.1046/j.0305-1846.2003.00498.x
  13. Diaz-Corrales, F., Asanuma, M., Miyazaki, I., Miyoshi, K., and Ogawa, N. (2005) Rotenone induces aggrergation of gammatubulin protein and subsequent disorganization of the centrosome: relevance to formation of inclusion bodies and neurodegeneration. Neuroscience 133, 117-135 https://doi.org/10.1016/j.neuroscience.2005.01.044
  14. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868
  15. Fernandez-Gonzalez, A., La Spada, A. R., Treadaway, J., Higdon, J. C., Harris, B. S., et al. (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295, 1904-1906 https://doi.org/10.1126/science.1068912
  16. Greer, C. A. and Shepherd, G. M. (1982) Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (pcd). Brain Res. 235, 156-161 https://doi.org/10.1016/0006-8993(82)90206-2
  17. Handel, M. A. and Dawson, M. (1981) Effects on spermiogenesis in the mouse of a male sterile neurological mutation, Purkinje cell degeneration. Gamete Res. 4, 185-192 https://doi.org/10.1002/mrd.1120040303
  18. Harris, A., Morgan, J. I., Pecot, M., Soumare, A., Osborne, A., et al. (2000) Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carboxypeptidases. Mol. Cell. Neurosci. 16, 578-596 https://doi.org/10.1006/mcne.2000.0900
  19. Horie, M., Mitsumoto, Y., Kyushiki, H., Kanemoto, N., Watanabe, A., et al. (2000) Identification and characterization of TMEFF2, a novel survival factor for hippocampal and mesencephalic neurons. Genomics 67, 146-152 https://doi.org/10.1006/geno.2000.6228
  20. Johnson, K., Patel, S., and Boekelheide, K. (2000) Multiple cadherin superfamily members with unique expression profiles are produced in rat testis. Endocrinology 141, 675-683 https://doi.org/10.1210/en.141.2.675
  21. Kim, T. R., Yoon, J. H., Kim, Y. C., Yook, Y. H., Kim, I. G., et al. (2004) LPS-induced CD53 expression: a protection mechanism against oxidative and radiation stress. Mol. Cells 17, 125-131
  22. Laird, P. W., Zijderveld, A., Linders, K., Rudnicki, M. A., Jaenisch, R., et al. (1991) Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293 https://doi.org/10.1093/nar/19.15.4293
  23. Landis, S. C. and Mullen, R. J. (1977) The development and degeneration of Purkinje cells in pcd mutant mice. J. Comp. Neur. 177, 125-144 https://doi.org/10.1002/cne.901770109
  24. Lavail, M. M., Blacks, J. C., and Mullen, R. J. (1982) Retinal degeneration in the pcd cerebellar mutant mouse. I. light microscopic and autoradiographic analysis. J. Comp. Neur. 212, 217-230 https://doi.org/10.1002/cne.902120302
  25. Mateos, A., Herrero, J., Tamames, J., and Dopazo, J. (2002) Supervised neural networks for clustering conditions in DNA array data after reducing noise by clustering gene expression profiles; in Methods of Microarray Data Analysis II, Lin, S. and Johnson, K. (eds.), pp. 91?103, Kluwer Academic Publishers, Boston
  26. Mullen, R. J., Eicher, E. M., and Sidman, R. L. (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc. Natl. Acad. Sci. USA 73, 208-212
  27. Ricciarelli, R., d'Abramo, C., Massone, S., Pronzato, M., and Tabaton, M. (2004) Microarray analysis in Alzheimer's disease and normal aging. IUBMB Life 56, 349-354 https://doi.org/10.1080/15216540412331286002
  28. Rong, Y., Wang, T., and Morgan, J. I. (2004) Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and $pcd^{3J}$ mice. Brain Res. Mol. Brain Res. 132, 128-?145 https://doi.org/10.1016/j.molbrainres.2004.10.015
  29. Sarna, J. R. and Hawkes, R. (2003) Patterned Purkinje cell death in the cerebellum. Prog. Neurobiol. 70, 473-?503 https://doi.org/10.1016/S0301-0082(03)00114-X
  30. Sousa, J. C., Grandela, C., Fernandez-Ruiz, J., de Miguel, R., de Sousa, L., et al. (2004) Transthyretin is involved in depression- like behaviour and exploratory activity. J. Neurochem. 88, 1052-1058 https://doi.org/10.1046/j.1471-4159.2003.02309.x
  31. Veldic, M., Guidotti, A., Maloku, E., Davis, J., and Costa, E. (2005) In psychosis, cortical interneurons overexpress DNAmethytransfrase 1. Proc. Natl. Acad. Sci. USA 102, 2152-2157
  32. Yoshihara, M. and Montana, E. S. (2004) The synaptotagmins: calcium sensors for vesicular trafficking. Neuroscientist 10, 566-574 https://doi.org/10.1177/1073858404268770