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Abstract. The aim of this paper is to establish the rate of convergence of Baskakov-

Durrmeyer operators for bounded variation function. We have given the better estimate

over the results due to Guo ([4]), Anial and Teberska ([1]) and Gupta and Srivastava ([8]).

1. Introduction

We first recall the construction of Baskakov-Durrmeyer operators. The
Baskakov-Durrmeyer operators Ln is the linear positive operator defined on [0,∞)
by

Ln(f, x) = (n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

0

pn,k(t)f(t)dt, x ∈ [0,∞)

where

pn,k(x) =
(n + k − 1

k

) xk

(1 + x)n+k
,

see e.g. ([9]). In [3] Bojnic estimated the rate of convergence of Fourier series of
functions of bounded variation. Aniol and Taberska ([1]) and Guo ([4]) obtained
analogous results for Durrmeyer type operators. A lot of work has been done in this
direction by Vijay Gupta and collaborators (see e.g. [5], [6], [7], [8]). We remark
here that the rate of convergence for the modified Baskakov operators was obtained
by Gupta and Srivastava ([8]), but there is some misprint in the estimate of R33 in
their main result, also very recently Bastien and Ragalski ([2]) gave the optimum
bound for Baskakov basis function. This along with the improvement in the result
of Gupta and Srivastava ([8]) motivated us to study further on such type of opera-
tor. In the present paper, we study the rate of convergence of Baskakov-Durrmeyer
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operators for function of bounded variation.

2. Auxiliary results

We need some auxiliary results for proving the main theorem.

Lemma 2.1 ([2]). For all x ∈ (0,∞) and n, k ∈ N there holds

pn,k(x) ≤ C√
nx(1 + x)

where

C =





1, if n = 1
2
√

2
3
√

3
, if n ≥ 2, k = 0

(
3
2

)3/2
n3/2(n− 1)n−1

(n +
1
2
)n+1/2

, if n ≥ 2, k ≥ 1.

Lemma 2.2 ([9]). Let the mth order moment for the operator Ln(f, x) be defined
by

Tn,m(x) = (n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

0

(t− x)mpn,k(t)dt

then

Tn,1(x) =
1 + 2x

n− 2
, n > 2

Tn,2(x) =
2(n− 1)x(1 + x) + 2(1 + 2x)2

(n− 2)(n− 3)
, n > 3.

If particular, given any λ > 2 and any x > 0 there is an integer N(λ, x) > 2 such
that

Tn,m(x) ≤ λx(1 + x)
n

for all n ≥ N(λ, x).

Next let

Kn(x, t) = (n− 1)
∞∑

k=0

pn,k(x)pn,t(t), λ > 2 and n > N(λ, x),

then

(i) For 0 ≤ y < x, we get

(2.1)
∫ y

0

Kn(x, t)dt ≤ λx(1 + x)
n(x− y)2

.
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(ii) For x < z < ∞, we get

(2.2)
∫ ∞

z

Kn(x, t)dt ≤ λx(1 + x)
n(z − x)2

.

The proof of (2.1) and (2.2) are simple and are left for the readers.

Lemma 2.3. For every k ∈ N, x ∈ (0,∞), we have


k∑

j=0

pn,j(x)−
k∑

j=0

pn−1,j(x)
 ≤

C

2
√

nx(1 + x)
.

The proof of the above lemma is simple just we have to apply Lemma 2.1.

3. Main results

In this section, we shall give our main results.

Theorem 3.1. Let f be a function of bounded variation an every finite subinterval
of [0,∞) and let

gx(t) =





f(t)− f(x+), if x < t < ∞
0, if t = x

f(t)− f(x−), if 0 ≤ t < x.

V b
a (gx) be the total variation of gx on [a, b]. If

f(t)
 < M(1 + t)α for t ∈ [0,∞),

where M > 0, α ∈ N0 and choose a number λ > 2. Then for n > max{1 +
α,N(λ, x)}, we get

Ln(f, x)− 1
2
{f(x+) + f(x−)}

(3.1)

≤  {f(x+)− f(x−)} C√
nx(1 + x)

+
3λ + (3λ + 1)x

nx

n∑

k=1

V
x+x/

√
k

x−x/
√

k
(gx)

+
λMKα(1 + x)α+1

nx
,

where C is a constant defined in Lemma 2.1.

Proof. First, we have
Ln(f, x)− 1

2
{f(x+) + f(x−)}

(3.2)

≤ Ln(gx, x)
 +

1
2

 {f(x+)− f(x−)}Ln (sign(t− x), x)
.

Thus to estimate (3.1), we need the estimates for Ln(gx, x) and Ln (sign(t− x), x).
Now using Lemma 2.1, Lemma 2.3 and using the similar methods as given in [8],
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we have

(3.3)
Ln (sign(t− x), x)

 ≤ 2C√
nx(1 + x)

.

Now to estimate Ln(gx, x),

Ln(gx, x) =
∫ ∞

0

Kn(x, t)gx(t)dt

=
(∫

I1

+
∫

I2

+
∫

I3

)
Kn(x, t)gx(t)dt

= R1 + R2 + R3, say.

Where I1 = [0, x− x/
√

n], I2 = [x− x/
√

n, x + x/
√

n] and I3 = [x + x/
√

n,∞).
Suppose λn(x, t) =

∫ t

0
Kn(x, u)du. First, we estimate R1. Writing y = x − x/

√
n

and using partial integration, we get

R1 =
∫ y

0

gx(t)Kn(x, t)dt

=
∫ y

0

gx(t)dt

(
λn(x, t)

)

= gx(y+)λn(x, y)−
∫ y

0

λn(x, t)dt

(
gx(t)

)
.

Since gx(y+)
 =

gx(y+)− gx(x)
 ≤ V x

y+
(gx),

then by (2.1), we get

R1

 ≤ V x
y+(gx)λn(x, y) +

∫ y

0

λn(x, t)dt(−V x
t (gx))

≤ V x
y+(gx)

λx(1 + x)
n(x− y)2

+
λx(1 + x)

n

∫ y

0

1
(x− t)2

dt(−V x
t (gx)).

Integrating by parts, we have
∫ y

0

1
(x− t)2

dt(−V x
t (gx)) =

−V x
y+(gx)

(x− y)2
+

V x
0 (gx)
x2

+ 2
∫ y

0

(
V̂ x

t (gx)
)

(x− t)3
dt,

where V̂ x
t (gx) is the normalized from of V x

t (gx) and V̂ x
t (gx) = V x

t (gx). Conse-
quently, we get

R1



≤ V x
y+(gx)

λx(1 + x)
n(x− y)2

+
λx(1 + x)

n

[
−V x

y+(gx)
(x− y)2

+
V x

0 (gx)
x2

+ 2
∫ y

0

(
V x

t (gx)
)

(x− t)3
dt

]

=
λx(1 + x)

n

[
V x

0 (gx)
x2

+ 2
∫ y

0

(
V x

t (gx)
)

(x− t)3
dt

]
.
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Replacing the variable y in the last integral by x− x/
√

n, we get
∫ x−x/

√
n

0

V x
t (gx)

(x− t)3
dt =

1
2x2

∫ n

1

V x
x−x/

√
n(gx)dt ≤ 1

2x2

n∑

k=1

V x
x−x/

√
n(gx).

Hence

(3.4)
R1

 ≤ 2λ(1 + x)
nx

n∑

k=1

V x
x−x/

√
n(gx).

Since
∫ b

a
dtλn(x, t) ≤ 1, for (a, b) ⊂ [0,∞), therefore

(3.5)
R2

 ≤ 1
n

n∑

k=0

V
x+x/

√
n

x−x/
√

n
(gx).

Finally, we estimate R3, writing z = x− x/
√

n, we have

R3 =
∫ ∞

x

gx(t)Kn(x, t)dt =
∫ ∞

z

gx(t)dt

(
λn(x, t)

)
.

We define Qn(x, t) on [0, 2x] as

Qn(x, t) =

{
1− λn(x, t), if 0 ≤ t ≤ 2x

0, if t = 2x.

Therefore

R3 = −
∫ 2x

2

gx(t)dt

(
Qn(x, t)

)
(3.6)

− gx(2x)
∫ ∞

2x

Kn(x, t)dt +
∫ ∞

2x

gx(t)dt

(
λn(x, t)

)

= R31 + R32 + R33, say.

Using (2.2) and integrating partially the first term, we get

R31

 ≤ V z−
x (gx)

λx(1 + x)
n(z − x)2

+
λx(1 + x)

n

∫ 2x−

z

1
(x− t)2

dt

(
V t

x (gx)
)

+
1
2
V 2x−

x (gx)
∫ ∞

2x

Kn(x, u)du

≤ V z−
x (gx)

λx(1 + x)
n(z − x)2

+
λx(1 + x)

n

∫ 2x−

z

1
(x− t)2

dt

(
V t

x (gx)
)

+
1
2
V 2x−

x (gx)
λx(1 + x)

nx2

≤ V z−
x (gx)

λx(1 + x)
n(z − x)2

+
λx(1 + x)

n
[V 2x

x (gx)
x2

− V z−
x (gx)

(z − x)2
+ 2

∫ 2x

z

V t
x (gx)

(x− t)3
dt

]
.
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Thus, by replacing the variable in the last integral by x + x/
√

n, we get

R31

 ≤ λx(1 + x)
nx2

[
V 2x

x (gx) +
n∑

k=1

V x+x/
√

k
x (gx)

]
(3.7)

≤ 2λ(1 + x)
nx

n∑

k=1

V x+x/
√

k
x (gx).

From (2.1), we get

(3.8)
R32

 ≤ gx(2x)
λx(1 + x)

nx2
+

λx(1 + x)
nx

n∑

k=1

V x+x/
√

k
x (gx).

Finally for n > α, we obtain

R33

 ≤ M(n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

2x

[(1 + t)α + (1 + x)α] pn,k(t)dt,

(i) If α = 0, then applying (2.1), we obtain

R33

 ≤ 2M(n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

2x

pn,k(t)dt

≤ 2λM(1 + x)
nx

, for n > N(λ, x).

(ii) If α = 1, then by (2.1) and Lemma 2.2, for n > N(λ, x), we get

R33

 ≤ M(n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

2x

(2 + 2x + t− x) pn,k(t)dt

≤ λM(1 + x)(2 + 3x)
nx

≤ 3λM(1 + x)2

nx
.

(iii) If α = 2, then for n > α

R33

 ≤ M(n− 1)(1 + 2α−1)(1 + x)α
∞∑

k=0

pn,k(x)
∫ ∞

2x

pn,k(t)dt

+ M2α−1(n− 1)
∞∑

k=0

pn,k(x)
∫ ∞

2x

pn,k(t)(t− x)αdt.

Consequently in case α = 2

R33

 ≤ 3λM(1 + x)3

nx
+

2λMx(1 + x)
n

≤ 5λM(1 + x)
nx

, for n ≥ N(λ, x).
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In general case, if α is even or odd then by Lemma 2.2, we may easily verify that
there exist a constant Kα depending only on α, such that

(3.9)
R33

 ≤ λMKα(1 + x)α+1

nx
, for all n ≥ max{(1 + α),N(λ, x)}.

Collecting the estimates of (3.2) to (3.9), we get the required result. ¤
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