EXPANSIONS OF FILTERS IN R₀-ALGEBRAS

MYUNG IM DOH, YOUNG BAE JUN* AND XIAOHONG ZHANG

Abstract. The notion of expansions of filters in R_0 -algebras is introduced. Also the notion of σ -primary filters in R_0 -algebras is discussed.

1. Introduction

In order to research the logical system whose propositional value is given in a lattice from the semantic viewpoint, Xu [11] proposed the concept of lattice implication algebras, and discussed some of their properties. Xu and Qin [12] introduced the notion of implicative filters in a lattice implication algebra, and investigated some of their properties. Turunen [8] introduced the notion of Boolean deductive system, or equivalently, Boolean filter in BL-algebras which rise as Lindenbaum algebras from many valued logic introduced by Hájek [3]. Boolean filters are important because the quotient algebras induced by Boolean filters are Boolean algebras, and a BL-algebra is bipartite if and only if it has proper Boolean filter. In [9], Wang introduced the notion of R_0 -algebras in order to provide an algebraic proof of the completeness theorem of a formal deductive system. We note that R_0 -algebras are different from BL-algebras because the identity $x \land y = x \odot (x \rightarrow y)$

Received April 15, 2005. Accepted July 28, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 03G10, 03G25, 06D99.

Key words and phrases: R_0 -algebra, (prime, σ -primary) filter, expansion of

^{*} Corresponding Author. Tel.: +82 55 751 5674, Fax: +82 55 751 6117 (Y. B. Jun).

holds in BL-algebras, but does not hold in R_0 -algebras. R_0 -algebras are also different from lattice implication algebras because the identity $(x \to y) \to y = (y \to x) \to x$ holds in lattice implication algebras, but does not hold in R_0 -algebras. Although they are different in essence, they have some similarities, that is, they all have implication operator \rightarrow . Therefore it is meaningful to generalize some aspects of lattice implication algebras and BL-algebras to R_0 -algebras. In [2], Esteva and Godo introduced the MTL-algebra, The MTL-algebra is an extension of a BL-algebra, which is obtained by eliminating the condition $x \wedge y = x \odot (x \rightarrow y)$ in BL-algebra. In fact, MTL-algebra is an algebra induced by a left continuous t-norm and its corresponding residuum, but BL-algebra is an algebra induced by a continuous t-norm and its corresponding residuum. It is proved that an R_0 -algebra is a particular type of MTL-algebra and its t-norm \odot is a nilpotent minimum t-norm [2], which is obtained by taking negation operator as $1 \to x$. Hence the theory of R_0 -algebras becomes one of the guides to the development of the theory of MTL-algebras. Lianzhen and Kaitai [5] extended the notions of implicative filters and Boolean filters to R_0 -algebras, and considered the fuzzification of such notions and gave characterizations of fuzzy implicative filters. They also proved that fuzzy implicative filters and fuzzy Boolean filters coincide in R_0 -algebras.

In this paper, we introduce the notion of expansions of filters in R_0 -algebras, and discuss the notion of σ -primary filters in R_0 -algebras.

2. Preliminaries

Definition 2.1. [9] Let L be a bounded distributive lattice with order-reversing involution \neg and a binary operation \rightarrow . Then $(L, \land, \lor, \neg, \rightarrow)$ is called a R_0 -algebra if it satisfies the following axioms:

(R1)
$$x \to y = \neg y \to \neg x$$
,

(R2)
$$1 \rightarrow x = x$$
,

(R3)
$$(y \to z) \land ((x \to y) \to (x \to z)) = y \to z$$
,

$$(R4) \ x \to (y \to z) = y \to (x \to z),$$

(R5)
$$x \to (y \lor z) = (x \to y) \lor (x \to z),$$

(R6)
$$(x \to y) \lor ((x \to y) \to (\neg x \lor y)) = 1.$$

Let L be a R_0 -algebra. For any $x, y \in L$, we define $x \odot y = \neg(x \to \neg y)$ and $x \oplus y = \neg x \to y$. It is proved that \odot and \oplus are commutative, associative and $x \oplus y = \neg(\neg x \odot \neg y)$, and $(L, \land, \lor, \odot, \to, 0, 1)$ is a residuated lattice.

Example 2.2. [5] Let L = [0, 1]. For any $x, y \in L$, we define $x \wedge y = \min\{x, y\}, \ x \vee y = \max\{x, y\}, \ \neg x = 1 - x$, and

$$x \to y := \left\{ \begin{array}{ll} 1 & \text{if } x \le y, \\ \neg x \lor y & \text{if } x > y. \end{array} \right.$$

Then $(L, \wedge, \vee, \neg, \rightarrow)$ is an R_0 -algebra which is neither a BL-algebra nor a lattice implication algebra.

A R_0 -algebra have the following useful properties.

Proposition 2.3. [7] For any elements x, y and z of an R_0 -algebra L, we have the following properties.

- (a1) $x \le y$ if and only if $x \to y = 1$,
- (a2) $x \le y \to x$,
- (a3) $\neg x = x \to 0$,
- (a4) $(x \to y) \lor (y \to x) = 1$,
- (a5) $x \le y$ implies $y \to z \le x \to z$,
- (a6) $x \le y$ implies $z \to x \le z \to y$,
- (a7) $((x \to y) \to y) \to y = x \to y$,
- (a8) $x \lor y = ((x \to y) \to y) \land ((y \to x) \to x),$
- (a9) $x \odot \neg x = 0$ and $x \oplus \neg x = 1$,
- (a10) $x \odot y \le x \wedge y$ and $x \odot (x \rightarrow y) \le x \wedge y$,
- (a11) $(x \odot y) \rightarrow z = x \rightarrow (y \rightarrow z),$
- (a12) $x \le y \to (x \odot y)$,

- (a13) $x \odot y \le z$ if and only if $x \le y \to z$,
- (a14) $x \le y$ implies $x \odot z \le y \odot z$,
- (a15) $x \to y \le (y \to z) \to (x \to z)$,
- (a16) $(x \to y) \odot (y \to z) \le x \to z$.

3. Expansions of filters

In what follows let L denote an R_0 -algebra unless otherwise specified.

Definition 3.1. [7] A nonempty subset F of L is called a *filter* of L if it satisfies

- (i) $1 \in F$,
- (ii) $(\forall x \in F) \ (\forall y \in L) \ (x \to y \in F \Rightarrow y \in F)$.

Definition 3.2. [7] A filter F of L is said to be *prime* if it satisfies

$$(\forall a, b \in L) (a \to b \in F \text{ or } b \to a \in F).$$

Proposition 3.3. [7] A filter F of L is prime if and only if it satisfies:

$$(\forall a, b \in L) (a \lor b \in F \implies a \in F \text{ or } b \in F).$$

Let F be a nonempty subset of L. Then the least filter containing F is called the *filter generated* by F, and denoted by $\langle F \rangle$.

The next statement gives a description of elements of $\langle F \rangle$.

Theorem 3.4. [4] If F is a nonempty subset of L, then

$$\langle F \rangle = \left\{ x \in L \mid a_1 \to (a_2 \to (\cdots \to (a_n \to x) \cdots)) = 1 \right\}.$$
for some $a_1, a_2, \cdots, a_n \in F$

For any $n \in \mathbb{N}$, we define $n(x) \to y$ recursively as follows: $0(x) \to y = y$, $1(x) \to y = x \to y$ and $(n+1)(x) \to y = x \to (n(x) \to y)$ for all $x, y \in L$. Using (R4), we know that $y \to (n(x) \to y) = 1$, that is, $y \leq n(x) \to y$ for all $x, y \in L$.

Proposition 3.5. Let F be a filter of L and $x \in L$. Then

(1)
$$\langle F \cup \{x\} \rangle = \{ y \in L \mid n(x) \to y \in F \text{ for some } n \in \mathbb{N} \}.$$

Proof. Denote by Ω_x the right hand side of (1). If $y \in \langle F \cup \{x\} \rangle$, then there exist $a_1, a_2, \dots, a_n \in F$ and $m \in \mathbb{N}$ such that

$$(2) m(x) \to (a_1 \to (a_2 \to (\cdots \to (a_n \to y) \cdots))) = 1.$$

Using (R4) repeatedly, (2) implies that

$$(3) a_1 \to (a_2 \to (\cdots \to (a_n \to (m(x) \to y)) \cdots)) = 1 \in F.$$

It follows from Definition 3.1(ii) that $m(x) \to y \in F$ so that $y \in \Omega_x$. Thus $\langle F \cup \{x\} \rangle \subseteq \Omega_x$. Conversely let $y \in \Omega_x$. Then $n(x) \to y \in F$ for some $n \in \mathbb{N}$. Since $F \subseteq \langle F \cup \{x\} \rangle$, it follows that

$$x \to ((n-1)(x) \to y) = n(x) \to y \in \langle F \cup \{x\} \rangle$$

Since $x \in \langle F \cup \{x\} \rangle$, we have $(n-1)(x) \to y \in \langle F \cup \{x\} \rangle$ by Definition 3.1(ii). Repeating this process we get $y = 0(x) \to y \in \langle F \cup \{x\} \rangle$. Hence $\Omega_x \subseteq \langle F \cup \{x\} \rangle$. This completes the proof.

Definition 3.6. Let $\mathfrak{F}(L)$ be the set of filters in L. By an expansion of filters in L we shall mean a function $\sigma:\mathfrak{F}(L)\to\mathfrak{F}(L)$ such that

- (o1) $(\forall G \in \mathfrak{F}(L)) (G \subseteq \sigma(G)).$
- (o2) $(\forall G, H \in \mathfrak{F}(L)) (G \subseteq H \Rightarrow \sigma(G) \subseteq \sigma(H)).$

Example 3.7. (1) The function $\sigma_0 : \mathfrak{F}(L) \to \mathfrak{F}(L)$ defined by $\sigma_0(G) = G$ for all $G \in \mathfrak{F}(L)$ is an expansion of filters in L.

- (2) The function ν that assigns the largest filter L to each filter of L is an expansion of filters in L.
 - (3) For each filter F of L, let

$$\mathfrak{M}(F) = \bigcap \{M \mid F \subseteq M, M \text{ is a maximal filter of } L\}.$$

Then \mathfrak{M} is an expansion of filters in L.

(4) Let $F, G \in \mathfrak{F}(L)$ be such that $F \subseteq G$. Then $\langle F \cup \{x\} \rangle \subseteq \langle G \cup \{x\} \rangle$. Hence the function $\sigma_x : \mathfrak{F}(L) \to \mathfrak{F}(L)$ given by $\sigma_x(F) = \langle F \cup \{x\} \rangle$ for all $F \in \mathfrak{F}(L)$ and $x \in L$ is an expansion of filters in L.

Definition 3.8. Let σ be an expansion of filters in L. Then a filter G of L is said to be σ -primary if it satisfies:

$$(\forall a,b \in L) (a \lor b \in G, a \notin G \Rightarrow b \in \sigma(G)).$$

Note that a filter G of L is σ_0 -primary if and only if it is a prime filter of L, where σ_0 is the function in Example 3.7(1).

Theorem 3.9. If σ and δ are expansions of filters in L such that $\sigma(G) \subseteq \delta(G)$ for every $G \in \mathfrak{F}(L)$, then every σ -primary filter is also δ -primary.

Proof. Let F be a σ -primary filter of L and let $a, b \in L$ be such that $a \lor b \in F$ and $a \notin F$. Then $b \in \sigma(F) \subseteq \delta(F)$ by assumption. Hence F is a δ -primary filter of L.

Corollary 3.10. Let σ be an expansion of filters in L. Then every prime filter of L is σ -primary.

Proof. Let G be a prime filter of L. Then G is σ_0 -primary, and $\sigma_0(G) = G \subseteq \sigma(G)$. It follows from Theorem 3.9 that G is a σ -primary filter of L.

Theorem 3.11. Let α and β be expansions of filters in L. Let σ : $\mathfrak{F}(L) \to \mathfrak{F}(L)$ be a function defined by $\sigma(G) = \alpha(G) \cap \beta(G)$ for all $G \in \mathfrak{F}(L)$. Then σ is an expansion of filters in L.

Proof. For every $G \in \mathfrak{F}(L)$, we have $G \subseteq \alpha(G)$ and $G \subseteq \beta(G)$ by (o1), and so $G \subseteq \alpha(G) \cap \beta(G) = \sigma(G)$. Let $G, H \in \mathfrak{F}(L)$ be such that $G \subseteq H$. Then $\alpha(G) \subseteq \alpha(H)$ and $\beta(G) \subseteq \beta(H)$ by (o2), which imply that

$$\sigma(G) = \alpha(G) \cap \beta(G) \subseteq \alpha(H) \cap \beta(H) = \sigma(H).$$

Therefore σ is an expansion of filters in L.

Generally, the intersection of expansions of filters is an expansion of filters.

Theorem 3.12. Let σ be an expansion of filters in L. If $\{G_i \mid i \in D\}$ is a directed collection of σ -primary filters of L where D is an index set, then $G := \bigcup_{i \in D} G_i$ is a σ -primary filter of L.

Proof. Clearly $G := \bigcup_{i \in D} G_i$ is a filter of L. Let $a, b \in L$ be such that $a \lor b \in G$ and $a \notin G$. Then there exists a σ -primary filter G_i such that $a \lor b \in G_i$ and $a \notin G_i$. Since G_i is σ -primary and $G_i \subseteq G$, it follows that $b \in \sigma(G_i) \subseteq \sigma(G)$ so that G is σ -primary.

Theorem 3.13. Let σ be an expansion of filters in L. If P is a σ -primary filter of L, then

$$(\forall F, G \in \mathfrak{F}(L)) \ (F \lor G \subseteq P, \ F \not\subseteq P \ \Rightarrow \ G \subseteq \sigma(P)),$$
 where $F \lor G = \{x \lor y \mid x \in F, \ y \in G\}.$

Proof. Assume that P is a σ -primary filter of L and let $F, G \in \mathfrak{F}(L)$ be such that $F \vee G \subseteq P$ and $F \not\subseteq P$. Suppose that $G \not\subseteq \sigma(P)$. Then there exist $a \in F \setminus P$ and $b \in G \setminus \sigma(P)$, which imply that $a \vee b \in F \vee G \subseteq P$. But $a \notin P$ and $b \notin \sigma(P)$. This contradicts the assumption that P is σ -primary. Consequently, the result is valid.

Theorem 3.14. If σ is an expansion of filters in L, then the function $E_{\sigma}: \mathfrak{F}(L) \to \mathfrak{F}(L)$ defined by

$$E_{\sigma}(G) := \bigcap \{ H \in \mathfrak{F}(L) \mid G \subseteq H, \text{ and } H \text{ is } \sigma\text{-primary} \}$$

for all $G \in \mathfrak{F}(L)$ is an expansion of filters in L.

Proof. Clearly, $G \subseteq E_{\sigma}(G)$ for all $G \in \mathfrak{F}(L)$. Let $F, G \in \mathfrak{F}(L)$ be such that $F \subseteq G$. Then

$$E_{\sigma}(F) = \bigcap \{ H \in \mathfrak{F}(L) \mid F \subseteq H \text{ and } H \text{ is } \sigma\text{-primary} \}$$

 $\subseteq \bigcap \{ H \in \mathfrak{F}(L) \mid G \subseteq H \text{ and } H \text{ is } \sigma\text{-primary} \}$
 $= E_{\sigma}(G).$

Hence E_{σ} is an expansion of filters in L.

Example 3.15. Let σ_0 be an expansion of filters in L given in Example 3.7(1). Then $E_{\sigma_0}: \mathfrak{F}(L) \to \mathfrak{F}(L)$ defined by

$$E_{\sigma_0}(G) = \bigcap \{ H \in \mathfrak{F}(L) \mid G \subseteq H \text{ and } H \text{ is } \sigma_0\text{-primary} \}$$
$$= \bigcap \{ H \in \mathfrak{F}(L) \mid G \subseteq H \text{ and } H \text{ is prime} \}$$

for all $G \in \mathfrak{F}(L)$ is an expansion of filters in L.

Acknowledgements. The second author was supported by Korea Research Foundation Grant (KRF-2003-005-C00013). The authors are highly grateful to referees for their valuable comments and suggestions for improving the paper.

References

- [1] G. S. Cheng, The filters and the ideals in R₀-algebras, Fuzzy Syst. Math. 15 (2001), no. 1, 58-61.
- [2] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets Syst. 124 (2001), 271-288.
- [3] P. Hájek, Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, Boston, London, 1998.
- [4] Y. B. Jun and L. Lianzhen, On filters of R_0 algebras, Kyungpook Math. J. (submitted).
- [5] L. Lianzhen and L. Kaitai, Fuzzy implicative and Boolean filters of R₀ algebras, Inform. Sci. 171 (2005), 61-71.
- [6] L. Lianzhen and L. Kaitai, Boolean filters of R_0 -algebras, Arch. Math. Logic (submitted).
- [7] D. W. Pei and G. J. Wang, The completeness and application of formal systems £, Sci. China (Ser. E) 32 (2002), no. 1, 56-64.
- [8] E. Turunen, Boolean deductive systems of BL-algebras, Arch. Math. Logic 40 (2001), 467-473.
- [9] G. J. Wang, Non-Classical Mathematical Logic and Approximate Reasoning, Science Press, Beijing, 2000.

- [10] G. J. Wang, On the logic foundation of fuzzy reasoning, Inform. Sci. 117 (1999), 47–88.
- [11] Y. Xu, Lattice implication algebras, J. Southwest Jiaotong Univ. 1 (1993), 20–27.
- [12] Y. Xu and K. Y. Qin, On filters of lattice implication algebras, J. Fuzzy Math. 1 (1993), no. 2, 251-260.

Myung Im Doh Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea

 $Email: {\bf sansudo 6@hanmail.net}$

Young Bae Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
Email: ybjun@gsnu.ac.kr jamjana@korea.com

Xiaohong Zhang
Department of Mathematics
The Faculty of Science
Ningbo University
Zhejiang Province, Ningbo 315211, China
Email: zxhonghz@263.net