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Abstract. We introduce the concept of what we call “regular difference covers” and

prove many nonexistence results and provide some new constructions. Although the tech-

niques employed mirror those used to investigate difference sets, the end results in this

new setting are quite different.

1. Introduction

Let G be any finite abelian group of order v. Let D = {x1, · · · , xk} be a multi-
set of elements from G (not all elements distinct). A difference of these elements is
called non-trivial if and only if it is of the form xi − xj , for i 6= j, otherwise trivial.
In particular the identity element 0 occurs exactly k times as a trivial difference
but it can also be a non-trivial difference, if some of the elements of D are equal.

Definition 1.1. A multiset D = {x1, · · · , xk} is called a regular difference cover
with parameters (v, k, λ) if and only if every element z ∈ G (including the identity
element) appears exactly λ times as a non-trivial difference, i.e., z = xi− xj , i 6= j,
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of elements of D.
It may be observed that if the requirement “non-trivial” is omitted in the above

definition, i.e., if every element z ∈ G appears exactly λ times as a difference, i.e.,
z = xi−xj for any i and j, of elements of G, then it follows from the orthogonality
relations of characters of the group G that D must necessarily be a union (as
multiset) of the whole group G a certain number of times. The above notion of
regular difference covers differ from that of difference sets or difference lists in the
requirement that the non-trivial differences cover all the non-identity elements of
G a constant number of times in the difference sets or difference lists. However,
in regular difference covers they cover all elements of G including the identity a
constant number of times. For instance, for G = Z7 = 〈g〉, the list (multiset)
{e, e, g, g2, g4} can easily be checked to be a difference list but is not a regular
difference cover. See, for example, [4] for difference sets and [1] for difference lists.

In the literature, difference covers have been studied in a more general context,
where the list of differences is simply required to cover all elements of G (not
necessarily with constant number of times) and the main object was to find minimal
size of D covering all of G as a list of differences. See, for example, [7], [16], [9],
[12], [11], [8], [13].

While this work is motivated by the work of T. Bier [5] and [3], in which the
regularity condition was introduced (i.e., the parameter λ was introduced), we were
pleasantly surprised when we came across the work of Buratti [6] in which he has
introduced the notion of ‘1-difference multiset.’ This concept coincides with what
we call here ‘regular difference cover.’ We wish to promote our nomenclature. Our
reasons are two-fold: (1) The phrases ‘multiset’ and ‘list’ are synonyms; hence the
phrase ‘difference multiset’ seems to bear the same meaning as the phrase ‘difference
list.’ But the latter phrase has an altogether different connotation, in the area of
algebraic design theory. (2) The phrase ‘difference cover’ has been used by many
authors earlier and the ‘regularity’ condition forcing the ‘lambda’ parameter as
constant, naturally justifies our adopted terminology.

As discussed in Buratti [6], ‘regular difference covers’ and their ‘family’ analogs
(so-called strong difference families) have applications in the construction of BIBD’s
and GDD’s. We also wish to mention in passing that some of our regular difference
sets give rise to certain class of self-dual codes over ‘small’ prime fields and some
classes of ‘integer’ weighing matrices. Thus, in addition to their interesting and rich
mathematical properties, ‘regular difference covers’ have immediate applications to
related areas in discrete mathematics. The overlap of our results with those of
Burratti [6] is very minimal. His results focus mainly around objects of the type
aD and ae + bD, for suitable choices of difference sets (or partial difference sets),
but our go a step further and investigate objects of the type aD+b(G−D), thereby
producing new families. Buratti’s methods are completely combinatorial, but we
adhere to the use of group rings, character theory and representation theory. On
the surface, it may appear that our results follow directly from established results
from the theory of difference sets. But there is a lot of ‘subtlity’ in here - the slight
change in the definition (from ‘difference set’ to ‘regular difference cover’) makes
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the construction methods and nonexistence results behave very differently in these
two ‘related’ areas of study. We reiterate: although we utilize tools from the theory
of difference sets the end results are very different. (For example, the parameter λ
in our study is necessarily even, in contrast to the difference sets. Proposition 2.10
has no “difference set” analog. Constructions in section 3 also look very different.)

In [3], the approach of using group rings and characters was followed and some
basic properties of regular difference covers were established. In this paper we study
multiplier theorems for regular difference covers, give their applications, characterize
all possible regular difference covers with λ = 2 and also construct several new
infinite families of regular difference covers.

We shall now give some preliminaries and also fix notations. Let R be a com-
mutative ring with unity 1 and let G be a group. We let RG denote the group ring
of G over R. We identify each multiset S of elements of G with the group ring
element

∑
g∈G sgg, where sg denotes the multiplicity (possibly zero) with which the

element g appears in S.
The homomorphism ε : RG → R, given by ε(

∑
g∈G agg) =

∑
g∈G ag is called

the augmentation mapping of RG and its kernel, denoted by ∆R(G), is called the
augmentation ideal of RG. By [15, Proposition 3.2.10], the set {g− 1|g ∈ G, g 6= e}
is a basis of ∆R(G) over R.

For A =
∑

g∈G agg ∈ RG and for any integer t, we define A(t) =
∑

g∈G agg
(t).

With these notations, it follows that a multiset D of G is a regular difference cover
with parameters (v, k, λ) if and only if

(1.1) DD(−1) = ke + λG

in ZG.
Let G be a finite abelian group of exponent m. A character χ of G is a homo-

morphism of G into the multiplicative group of complex m th roots of unity. It is
well known that the characters of G form a group G ∗ that is isomorphic to G. The
identity element of G ∗ is the principal character χ0 that maps each element of G
to 1. The characters of G can be extended by linearity to the group ring ZG. Thus
each character of G yields a ring homomorphism from ZG into the ring of algebraic
integers in the cyclotomic field obtained by adjoining a primitive m th root of unity
to the field Q of rational numbers. We let ζm denote the complex m th root of unity
e2πi/m.

It is easy to see that D is a (v, k, λ) regular difference cover in an abelian group
G if and only if

|χ(D)| 2 =

{
k2 = k + λv, if χ = χ0

k, if χ 6= χ0,

and that if D is a (v, k, λ) regular difference cover, then k(k − 1) = λ v.
Let G be a finite abelian group and let N be a normal subgroup of order n of

G. Let σ : G → G/N be the natural homomorphism. Then applying σ on both
sides of equation 1.1, we obtain the following Proposition, which will be used often.
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Proposition 1.2. Let D be a (v, k, λ) regular difference cover in an abelian group
G. Then σ(D) is a (v/n, k, nλ) regular difference cover in G/N .

Remark 1.3. Let D =
∑v

i=1 si g i, si ≥ 0, be a regular difference cover with
parameters (v, k, λ) in an abelian group G = {g1 = e, g2, · · · , gv}. Then

∑v
i=1 si =

k. Also, the identity element e is represented as a non-trivial difference exactly∑v
i=1 si(si−1) times. It follows that

∑v
i=1 si(si−1) = λ and hence

∑v
i=1 s2

i = k+λ.
These conditions will be used later.

2. Multiplier theorems

Multipliers for regular difference covers can be defined as in the case of difference
sets, namely:

Definition 2.1. Let D be a (v, k, λ) regular difference cover in an abelian group G.
An automorphism σ of G is said to be a multiplier of D if σ(D) = D + g, for some
g ∈ G. An integer t, relatively prime to the order of G , is said to be a numerical
multiplier, if the automorphism σ : x 7→ tx is a multiplier of D.

We now prove a multiplier theorem for regular difference covers. The proof is
similar to the proof of Theorem VI.4.6 of [4], which we give below for the sake of
completeness.

Theorem 2.2. Let D be a (v, k, λ) regular difference cover in an abelian group G
such that (v, k) = 1. Let t be an integer such that t ≡ pf (mod v∗) for some f , for
every prime divisor p of k, where v∗ is the exponent of G. Then t is a numerical
multiplier for D (it follows that (t, v) = 1).

Proof. We first claim that D(t)D(−1) ≡ λG (mod k). For this, it is sufficient to
show that D(t).D(−1) ≡ λG (mod qa), for every prime divisor q of k such that
k = qak

′
, (k

′
, q) = 1. Suppose not; then D(t).D(−1) − λG = qb.B, where B ∈ ZG,

B � 0 (mod q) and b < a. Suppose that e is the smallest positive integer such that
te ≡ 1 (mod v∗). Now D(te) = D and hence

(D(t)D(−1) − λG)(D(t2)D(−t) − λG(t)) · · · (D(te)D(−te−1) − λG(te−1))

≡ (DD(−1))(D(t)D(−t)) · · · (D(te−1)D(−te−1)) (mod G)
≡ ke (mod G) ,

as (D(tr)D(−tr)) = ke+λG , and 0 ≤ r ≤ e−1. Thus (D(t)D(−1)−λG)(D(t2)D(−t)−
λG(t)) · · · (D(te)D(−te−1) − λG(te−1)) = ke + βG = ke + αG, where β ∈ ZG, α ∈ Z.
Also, ε(D(t)D(−1) − λG) = k2 − λv = k, where ε : ZG → Z is the augmentation
homomorphism. Hence, from above, ke = ke + αv, so that α = 0. Thus

(D(t)D(−1) − λG)(D(t2)D(−t) − λG(t)) · · · (D(te)D(−te−1) − λG(te−1)) = ke.



Regular Difference Covers 141

Hence
qebB.B(t) · · ·B(te−1) = ke = qea(k

′
)e

implies that B.B(t) · · ·B(te−1) ≡ 0 (mod q). But t ≡ qf (mod v∗), implies that
B(tr) = B(qfr) ≡ Bqfr

(mod q), by [4, Lemma VI.3.7]. Thus, B.Bqf · · ·Bqf(e−1) =
B1+qf +···+qf(e−1) ≡ 0 (mod q) and hence B ≡ 0 (mod q), by [4, Lemma 6.3.7], which
is a contradiction. Thus D(t)D(−1) = kQ + λG, Q ∈ ZG. Multiplying both sides
by D, we get D(t)(ke + λG) = kQD + λGD, so that

(2.1) D(t) = DQ,

as GD = GD(t) = kG. Taking augmentation on both sides, k = ε(D(t)) = kε(q), so
that ε(Q) = 1 and hence Q−1 ∈ ∆Z(G). It follows that (Q−1)G = 0, i.e., QG = G
and also Q−1G = G. By (2.1), D(−t) = D(−1)Q(−1) and on multiplying D(t) and
D(−t), we get ke + λG = (ke + λG)QQ(−1), i.e., ke = kQQ(−1), i.e., QQ(−1) = e.
If Q =

∑
g∈G qgg, then e = QQ(−1) implies that

∑
g∈G q2

g = 1 and hence Q = g for
some g ∈ G. Thus, D(t) = D.g, g ∈ G, so that t is a multiplier. ¤

Remark 2.3. In fact one can show that if D is a regular difference cover with
parameters (v, k, λ) and if p is a prime divisor of k such that (p, v) = 1 and p > λ,
then p is a multiplier for D. However, if k = pak

′
, (p, k

′
) = 1, then λ = pak

′
(pak

′ −
1)/v and hence λ ≥ pa. Thus, such a p does not exist. Also, it is possible to prove
a multiplier theorem for regular difference covers, similar to McFarland’s multiplier
theorem for difference sets ([4, Theorem VI.4.10]), but Theorem 2.2 above is most
suitable for applications.

Remark 2.4. Let G = 〈g〉 be the cyclic group of order 11. Then D = 2e + 2g2 +
2g6 + 2g7 + 2g8 + 2g10 is easily seen to be a regular difference cover in G with
parameters (11, 12, 12). One can check that 3 is a multiplier for D but the prime
2 is not a multiplier for D. However, (11, 12) = 1 and 2|12. Thus, every prime
divisor of k need not be a multiplier for regular difference covers with parameters
(v, k, λ). Therefore, a conjecture like the “multiplier conjecture for difference sets”
is not feasible for regular difference covers.

Let G be a finite abelian group of order v. Recall that G is a basis of ZG over Z.
We enumerate the elements of G in some order : G = {e = g1, · · · , gv}. The regular
representation % : G → GL(ZG) is defined by assigning for every g ∈ G, the linear
mapping %g which acts on the above basis by multiplication, i.e., %g(gi) = ggi. The
matrix corresponding to %g with respect to the above fixed basis is a permutation
matrix and hence the matrix corresponding to %g−1 is the transpose of the matrix
corresponding to %g. We thus get a homomorphism % : G → GL(v,Z). Extending
% by linearity to ZG, we get the regular representation % : ZG → Mv×v(Z).

Definition 2.5. Let D be a (v, k, λ) regular difference cover in an abelian group
G. Let M be the matrix of the regular representation of D ∈ ZG (having fixed the
enumeration G = {e = g1, · · · , gv} of elements of G). We shall call M to be an
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“incidence matrix” of D.

Remark 2.6. Since the inverse of a permutation matrix is its transpose, from the
identity DD(−1) = ke + λG , it follows that MMT = kIv×v + λJ , where Iv×v is
the identity matrix of size v and J is the v × v matrix with all entries 1.

As in the proof of Lemma II. 2.3 of [4], it follows that MMT has one eigenvalue
k2 and v − 1 eigenvalues k. Thus det MMT = kv+1 and that M is non - singular.

Let t be a numerical multiplier of a regular (v, k, λ) difference cover D in an
abelian group G. Then D(t) = Dgi for some gi ∈ G and %(D(t)) = %(Dgi) =
%(D)%(gi) = MQ, where Q the permutation matrix %(gi). On the other hand, for
any gj ∈ G, (Dgj)(t) = D(t)gt

j = Dgig
t
j . Since g 7→ gt is an automorphism of G,

it follows that this automorphism permutes the translates D = Dg1, Dg2, · · · , Dgv

(as g 7→ gig permutes elements of G). Thus, %(D(t)) = PM , for some permuta-
tion matrix P , and hence M = P−1MQ. The number of fixed rows (respectively
columns) of M , on multiplication by P−1 and Q respectively is the trace of P−1

(respectively the trace of Q). As M is non - singular, Q = M−1PM and trace Q
= trace P = trace PT = trace P−1.Thus, the number of elements of G fixed by
the automorphism g 7→ gt is same as the number of translates Dgi of D fixed by
g 7→ gt. Since e is fixed, it follows that there exists at least one translate Dgi which
is fixed by the automorphism g 7→ gt. We have thus proved:

Proposition 2.7. Let t be a numerical multiplier of an abelian (v, k, λ) regular
difference cover D. Then there exists at least one translate Dgi of D which is fixed
by the automorphism g 7→ gt of G, i.e., (Dgi)(t) = Dgi.

Remark 2.8. Using regular representations, one can prove the analogue of the
result of McFarland and Rice for regular difference covers, on the lines of the proof
of Theorem VI.2.6 of [4].

Remark 2.9. When considering a hypothetical abelian (v, k, λ) - regular difference
cover, Proposition 2.7 and Remark 2.8 allow us to assume that D is fixed by every
numerical multiplier. Hence D must then be the union (as a multiset) of (several
copies of) orbits on G under any group M (usually a cyclic group) of numerical
multipliers.

We shall now give some applications of the multiplier theorem for regular dif-
ference covers. However, we first Characterize all cyclic regular difference covers
with parameters (k(k − 1)/2, k, 2), which, as claimed by Bier [5], exist if and only
if k = 3 or k = 4. We have not been able to verify the details of his proof.

We first show:

Proposition 2.10. Suppose that D is a cyclic regular difference cover with param-
eters (v, k, 2). Then k is not divisible by square of any odd prime.

Proof. Suppose that p is an odd prime such that p2|k. As v = k(k−1)
2 , p|v. Let

S be the Sylow p− subgroup of G of order pa. Let G = ST for some subgroup T
of G. By Proposition 1.2, E = σ(D), the image of D under σ : G → G/T is a
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(pa, k, 2v/pa) regular difference cover in S. Since p is self conjugate modulo |S|, by
a result similar to Lemma 1.2 of [2], it follows that χ(E) ≡ 0 (mod p), for every
non-principal character χ of S (as p2|k). So, by Ma’s Lemma, E = pX + 〈g〉Y ,
where order of g is p, g ∈ S and X, Y ∈ ZS. It follows that EE(−1) ≡ 0 (mod p)
and as EE(−1) = ke + 2v

pa , p| 2v
pa , which is not possible. Hence k is not divisible by

the square of any odd prime. ¤
If v is even, applying the (real valued) character of order 2 to the equation

DD(−1) = ke + λG, it follows that k = (χ(D))2 must be a perfect square. Thus, it
follows that if D is a regular cyclic difference cover with parameters (v, k, 2) and if
v is odd, then k is a product of distinct primes. Also, in case v is even, k has to ve
a perfect square and Proposition 2.10 implies that k = 22n and v = 22n−1(22n− 1).

A proof similar to that of Theorem VI.15.11 of [4] yields the following exponent
bounds.

Theorem 2.11 (Turyn’s Exponent Bound). Assume the existence of a (v, k, λ)-
regular difference cover D =

∑
g∈G sgg in an abelian group G. Suppose that T =

maxg∈G sg. Let p be a prime divisor of v and denote the Sylow p−subgroup of G
by S. Let U be any subgroup of G with U ∩ S = {e} and assume that p2a divides
k for some a ≥ 1. If p is self conjugate modulo the exponent of G/U , then exp
S ≤ |U |

pa |S|T .

Applying the above result to hypothetical cyclic regular difference cover with
parameters (22n−1(22n − 1), 22n, 2), one observes that as λ = 2, Remark 1.3 yields
that T = 2. Hence, taking U = {e}, 22n−1 ≤ 1

2n .22n−1.2, i.e., 22n−1 ≤ 2n, so that
n ≤ 1. Hence the only difference cover of this type would have parameters (6, 4, 2).
Combining all the above observations, we have:

Proposition 2.12. If D is a regular difference cover with parameters (v, k, λ), then
either v = 6, k = 4 or k is a product of different primes.

In order to characterize all regular difference covers with parameters (v, k, 2),
we first prove:

Lemma 2.13. Let G = P ×H be an abelian group of order v = pw, where P = 〈α〉,
o(α) = p, |H| = w, p is a prime and w is a positive integer relatively prime to p.
Let t be an integer such that t ≡ 1 (mod w) and t ≡ 0 (mod p). Suppose there exists
D ∈ ZG such that

DD(−1) = n + λG

with p|n and p|ε(D). Then
D(t)D(−1) = pX

where X ∈ ZG satisfies PX = n
p P + λG.

Proof. Note that t ≡ pj mod pw for some positive integer j. So

D(t)D(−1) ≡ Dpj

D(−1) ≡ nDpj−1 + λχ0(D)pj−1G ≡ 0 (mod p),
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i.e., D(t)D(−1) = pX for some X ∈ ZG.
Let ρ : G → H be the projection such that ρ(α) = 1 and ρ(h) = h for all h ∈ H.

Since ρ(D) = D(t) = ρ(D(t)),

n + λpH = ρ(D)ρ(D)(−1) = ρ(D(t)D(−1)) = pρ(X).

Thus PX = n
p P + λG. ¤

Lemma 2.14. With the notation and conditions of Lemma 2.13 above, suppose in
addition that 0 < λ < p. Then

v ≤ (n2 + λnp)(p− 1)
λp(p− λ)

+ p.

Proof. Let X =
∑p−1

i=0

∑
g∈H aαigα

ig where aαig are integers. Since

p2XX(−1) = D(t)D(−t)DD(−1) = (n + λpH)(n + λG) = n2 + λnpH + (λn + λ2v)G,

we have
p−1∑

i=0

∑

g∈H

a2
αig =

n2 + λnp + λn + λ2v

p2
.

By PX = n
p P + λG, we have

p−1∑

i=0

aαig =

{
λ ifg 6= 1
n+λp

p ifg = 1.

Note that
p−1∑

i=0

a2
αi ≥

(
n + λp

p2

)2

p =
n2 + 2λnp + λ2p2

p3

and since 0 < λ < p, for g 6= 1,

p−1∑

i=0

a2
αig ≥ λ.

So

λ

(
v

p
− 1

)
+

n2 + 2λnp + λ2p2

p3
≤ n2 + λnp + λn + λ2v

p2

and the lemma follows. ¤
We are now ready to show :

Theorem 2.15. Cyclic (v, k, 2) regular difference covers exist if and only if (v, k) =
(3, 3) or (6, 4).
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Proof. By Proposition 2.12, either v = 6, k = 4 or k is a product of distinct
primes. Suppose there exists a cyclic (v, k, 2) difference cover with k ≥ 10. Then
v = (k2−k)/2. Let p be the largest prime divisor of k. Note that p ≥ 5. By Lemma
2.14,

k2 − k

2
≤ (k2 + 2kp)(p− 1)

2p(p− 2)
+ p (*)

<
k2 + 2kp

2(p− 2)
+ p.

This implies that

k <
3p− 2
p− 3

+
2p(p− 2)
k(p− 3)

≤ 3p− 2
p− 3

+
2(p− 2)
p− 3

= 5 +
9

p− 3
≤ 9.5 ,

which contradicts the assumption k ≥ 10.
However, if (v, k, 2) regular difference cover exists, then k ≤ 9. Now, regular

difference covers with parameters (10, 5, 2) does not exist (5 is not a square) and one
with parameters (15, 6, 2) does not exist because the one with parameters (3, 6, 10)
does not exist (not possible to find si’s with s1 + s2 + s3 = 6, s2

1 + s2
2 + s2

3 = 16).
Also, k = p = 7, does not satisfy the inequality (*) above. Regular difference
covers with parameters (28, 8, 2) and (36, 9, 2) do not exist as 8 is not a square and
by Proposition 2.11 respectively. Thus, only choices left are (3, 3, 2) and (6, 4, 2)
and one checks easily that regular difference covers with these parameters exist
(D = 1 + 2g for (3, 3, 2) and D = 2 + h + h4 for (6, 4, 2)). This completes the proof
of Theorem 2.15. ¤

Having investigated regular difference covers with parameters (k(k−1)/2, k, 2),
we now turn to regular difference covers with parameters ((k−1)/2, k, 2k) and apply
multiplier theorem. The multiplier Theorem 2.2 does not yield any any significant
information about regular difference covers with parameters ((p−1)/2, p, 2p), where
p is a prime; as even though p is a multiplier for the regular difference cover with
parameters ((p − 1)/2, p, 2p), but p ≡ 1 (mod (p − 1)/2) and hence orbits on G
by the automorphism group generated by the mulpilier p are of length 1. We thus
investigate the regular difference covers with parameters ((pq−1)/2, pq, 2pq), where
p and q are distinct primes.

If D is a regular difference cover with parameters (v, k, λ) and if M = %(D) is
the matrix of D in the regular representation, then as observed earlier MMT =
kIv×v + λJv×v. Working exactly as in the proof of Lemma II.4.5 of [4], it follows
that Bruck-Ryser-Chowla type result holds for regular difference covers. Namely,
if there exists a regular difference cover with parameters (v, k, λ), with v odd, then
the Diophantine equation

x2 = ky2 + (−1)
v−1
2 λz2

has a non-trivial solution in integers.
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For distinct primes p and q, if a cyclic regular difference cover with parameters
(pq−1

2 , pq, 2pq) exists then a simple application of the above result yields that in
case p and q are odd, then either p ≡ 1 (mod 8), q ≡ 3 (mod 8) or p ≡ 1 (mod 8),
q ≡ 7 (mod 8) and in both cases p is a square modulo q. For instance p = 73, q = 23
is one such pair. We show:

Example 2.16. The regular difference cover with parameters (839, 73×23, 2×73×
23) does not exist. From Theorem 2.2, it follows that both 73 and 23 are multipliers
for D and hence D must be a union of orbits of the automorphism induced by either
23 or 73 in the cyclic group of order 839. The order of either of 23 or 73 modulo
839 is 419. There is one orbit of length 1 and two of length 419, say, C1 and C2

for the automorphism induced by the prime 23 in the group of order 839. Suppose
that D = a.e + b.C1 + c.C2, where a, b, c ≥ 0. Then by Remark 1.3,

a + 419b + 419c = 73× 23 = 1679

a2 + 419b2 + 419c2 = 73× 23 + 2× 73× 23 = 3× 1679 .

One checks easily that as 0 ≤ b ≤ 3 and 0 ≤ c ≤ 3, there is no solution to the
above equations. Thus regular difference covers with parameters (839, 73× 23, 2×
23× 73) does not exist.

Example 2.17. The regular difference covers with parameters (33, 34, 34) do not
exist. As, by Theorem 2.2, 17 is a multiplier. The order of 17 modulo 33 is 10.
There are one orbit of size 1, one orbit of size 2 and three orbits of size 10. Since
the hypothetical difference cover has to be a union of orbits, there must exist non-
negative integers a, b, c, d, e satisfying

a + 2b + 10c + 10d + 10e = 17× 2 = 34

a2 + 2b2 + 10c2 + 10d2 + 10e2 = 34 + 34 = 68

or, after setting a = 2a1

a1 + b + 5c + 5d + 5e = 17

2a2
1 + b2 + 5c2 + 5d2 + 5e2 = 34 .

It follows that 0 ≤ c, d, e ≤ 2 and a1 +b ≡ 2 (mod 5) and 2a2
1 +b2 ≡ 4 (mod 5).

Thus either a1 ≡ 0 (mod 5) and b ≡ 2 (mod 5) or a1 ≡ 3 (mod 5) and b ≡ 4 (mod 5).
For a1 = 3 and b = 4 and also for a1 = 0 and b = 2, one checks easily that the
above equations have no solutions. Hence the required regular difference covers do
not exist.

Example 2.18. Regular difference covers with parameters (81, 82, 82) does not
exist. As before, 41 is a multiplier. The orbit lengths are 1, 2, 6, 18 and 54. If the
hypothetical regular difference cover exists, there should exist non-negative integers
a, b, c, d, e such that

a + 2b + 6c + 18d + 54e = 82
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a2 + 2b2 + 6c2 + 18d2 + 54e2 = 164 .

The above two equations have a unique solution a = 6, b = 5, c = 2, d =
0, e = 1. Thus D should be

D = 6e + 5(g27 + g54) + 2(g9 + g18 + g36 + g72 + g63 + g45) + (g + g2 + · · · ).
Checking the character values using Mathematika on the computer shows that D
is not a regular difference cover. Hence regular difference covers with parameters
(81, 82, 82) do not exist.

In a similar manner, Theorem 2.2 can be used to show the non-existence of
regular difference covers with parameters (109, 73× 3, 2× 73× 3) and many more.

3. Constructions of new regular difference covers

In this section we shall construct several new families of regular difference covers.
In [3], regular difference covers with parameters (m(m − 1), m2, m(m + 1)) and
regular difference covers with parameters (pn, pn, pn−1) (p an odd prime) of the
form E = e + 2D were constructed, where for pn ≡ 3 (mod 4), D is a difference set
with parameters (pn, (pn− 1)/2, (pn− 3)/4) and for pn ≡ 1 (mod4), D is a partial
difference set with parameters (pn, (pn − 1)/2, (pn − 5)/4, (pn − 1)/4).

For several families of difference sets D, it is possible (though not easy) to choose
positive integers a and b such that E = aD + b(G−D) is a regular difference cover
with suitable parameters. A significant feature of this construction is that for a
chosen abelian group G, it is possible to construct infinitely many regular difference
covers in G with size and regularity parameter (i.e., the number of times it covers
G) as large as desired.

Suppose that D is a difference set in a group G with parameters (v, k, λ)
and let E = aD + b(G − D), where a and b are positive integers. Then for any
non-principal character χ of G, χ(E) = aχ(D) + bχ(G − D) = (a − b)χ(D) and
hence

χ(E)χ(E) = (a− b)χ(D)χ(D) = (a− b)2(k − λ) .

Thus E will be a regular difference cover in G if and only if (a − b)2(k − λ) =
χ(E)χ(E) = |E| = ak + b(v − k).

For further use we record this observation as:

Lemma 3.1. Let D be a difference set with parameters (v, k, λ) in an abelian group
G. Then, for positive integers a and b, E = aD + b(G−D) is a regular difference
cover in G with parameters (v, ak + b(v − k), (ak + b(v − k))(ak + b(v − k)− 1)/v)
if and only if (a− b)2(k − λ) = ak + b(v − k).

We now have:

Theorem 3.2.

(a) (Planar Regular Difference Covers).
Let D be a planar difference set with parameters (n2 + n + 1, n + 1, 1). Then
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E = (4n3 + 6n2 + 4n)D + (4n3 + 8n2 + 7n + 2)(G−D)

is a regular difference cover with parameters (n2 +n+1, 4n5 +12n4 +17n3 +
12n2 + 4n, (4n5 + 12n4 + 17n3 + 12n2 + 4n)(4n3 + 8n2 + 5n− 1)).

(b) (Paley Regular Difference Covers).
Let D be a Paley difference set with parameters (q, (q−1)/2, (q−3)/4), where
q is a prime power, q ≡ 3 (mod 4). Then

E = (16q2 + 12q − 4)D + (16q2 + 20q − 4)(G−D)

is a regular difference cover with parameters (q, 16q2(q +1), 16q(q +1)(16q3 +
16q2 − 1)).

(c) (Menon-Hadamard Regular Difference Covers).
Let D be a Menon - Hadamard difference set with parameters (4u2, 2u2 −
u, u2 − u). Then

E = (4u2 − 2u− 1)D + (4u2 + 2u− 1)(G−D)

is a regular difference cover with parameters (4u2, 16u4, 4u2(4u− 1)(4u+1)).

(d) (Singer Regular Difference Covers).
Let D be a Singer difference set with parameters

(
qd+1−1

q−1 , qd−1
q−1 , qd−1−1

q−1

)
,

d ≥ 2, q a prime power. Then

E =
(

2qd + 4qd−1.
qd+1 − 1

q − 1

)
D

+
(

q(1 + 2qd−1) + (2 + 4qd−1)
(

qd+1 − 1
q − 1

))
(G−D)

is a regular difference cover with parameters
(

qd+1−1
q−1 ,K, K(K−1)(q−1)

qd+1−1

)
, where

K = qd−1[4q2d+2 + 4qd+3− 4qd+2− 8qd+1 + q4− 2q3− 3q2 + 4q + 4]/(q− 1)2.

(e) (McFarland Regular Difference Covers).

Let D be a McFarland difference set with parameters

(
qd+1

(
1 + qd+1−1

q−1

)
,

qd
(

qd+1−1
q−1

)
, qd

(
qd−1
q−1

))
, where q is a prime power and d is a positive

integer. Then

E = (4qd(2q + q2 + · · ·+ qd+1) + 2(qd+1 + q − 1))D
+ (4qd(2q + q2 + · · ·+ qd+1)− 2(1 + q + · · · qd))(G−D)

is a regular difference cover with parameters
(
v = qd+1(1 + qd+1−1

q−1 ),K, K(K−1)
v

)
,

where K = 4q2d(2q + q2 + · · ·+ qd+1)2.
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Proof. For each of the families in (a), (b), (c), (d) and (e), using Lemma 3.1, it is
enough to check that for the given choice of ‘a’ and ‘b’, (a−b)2(k−λ) = ak+b(v−k),
where D is the difference set under consideration with parameters (v, k, λ). ¤

Example 3.3 Let D = g + g2 + g4 be the (7, 3, 1) difference set in the cyclic group
G = 〈g〉 of order 7. Then E = 64(g+g2+g4)+80(e+g3+g5+g6) is a (7, 512, 37376)
regular difference cover. Also, let D = g+g3 +g4 +g5 +g9 be the difference set with
parameters (11, 5, 2) in the cyclic group G = 〈g〉 of order 11. Then E = (16× 112 +
12×11−4)(g+g3 +g4 +g5 +g9)+(16×112 +20×11−4)(e+g2 +g6 +g7 +g8 +g10)
is a (11, 23232, 49063872) regular difference cover.

Remark 3.4. Usually, for a (v, k, λ) difference set D in an abelian group G, there
are infinitely many choices for a and b such that E = aD + b(G −D) is a regular
difference cover. In fact, if a and b are such that E = aD + b(G −D) is a regular
difference cover with parameters (v, ak+b(v−k), (ak+b(v−k))(ak+b(v−k)−1)/v),
then for

c = (4(k − λ) + 2)v + 4(a− b)(k − λ)− 2k

d = 4(k − λ)v + 4(a− b)(k − λ)− 2k,

E
′
= (a+c)D+(b+d)(G−D) is also a regular difference cover in G with parameters

(v, (a+c)k+(b+d)(v−k), ((a+c)k+(b+d)(v−k))((a+c)k+(b+d)(v−k)−1)/v).
Indeed, one checks that

χ(E
′
)χ(E′) = ((a− b) + (c− d))2(k − λ)

= ak + b(v − k) + 4v2(k − λ) + 4(a− b)v(k − λ)
= (a + c)k + (b + d)(v − k).

Remark 3.5. In general, for a partial difference set D with parameters (v, k, λ, µ),
it is not possible to choose positive integers a and b such that E = aD+ b(G−D) is
a regular difference cover. Indeed, proceeding as in Lemma 3.1, E will be a regular
difference cover if and only if for any non-principal character χ of G,

χ(E)χ(E) = (a− b)2χ(D)χ(D) = ak + b(v − k)

i.e., if and only if

|χ(D)|2 =
ak + b(v − k)

(a− b)2
.

The right hand side of the above is a fixed number, whereas, usually, for partial

difference sets, non-principal characters take two different values λ−µ±
√

(λ−µ)2+4γ

2 ,
where γ = k − µ, if e /∈ D and γ = k − λ if e ∈ D (see [10] or [14]).

As partial difference sets D do not yield regular difference covers of type E =
aD+b(G−D), we now examine whether it is possible to construct regular difference
covers of type ae + bD from partial difference sets. We observe:
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Lemma 3.6. Let D be a (v, k, λ, µ) partial difference set with D = D(−1) and
e /∈ D. Then E = ae + bD will be a (v, a + bk, b2µ) regular difference cover if and
only if µ−λ > 0, and either b(µ−λ) = 2a and a2+b2(k−µ) = a+bk or µ−λ = 2ab
and a2 + k − µ = a + bk.

Proof. Using properties of partial difference sets, as given in [10] or [14], it follows
that

EE(−1) = a2 + 2abD + b2D2

= a2 + 2abD + b2(λD + µ(G−D) + (k − µ)e)
= (a2 + (k − µ)b2)e + (2ab + b2λ)D + b2µ(G−D).

Hence EE(−1) = (a+bk)e+αG, for some positive integer α if and only if 2ab+b2λ =
b2µ and a2 + (k − µ)b2 = a + bk.

Also, writing EE(−1) differently, we get

EE(−1) = a2 + 2abD + b2(µG + (λ− µ)D + (k − µ)e)
= (a2 + k − µ) + b2µG + (2ab + (λ− µ))D.

Thus, EE(−1) = (a+bk)e+αG if and only if a2+k−µ = a+bk and 2ab+(λ−µ) = 0.
¤

J. Davis in [10] has constructed partial difference sets in Z2
p2 with parameters

(p4, (t+fp)(p2−1), p2 +(t+fp)2−3(t+fp), (t+fp)2− (t+fp)), 3 ≤ t ≤ p+1, 1 ≤
f ≤ p− 1 (Theorem 3.3 of [10]). Using these partial difference sets, we observe:

Proposition 3.7. Let D be the partial difference set as above. Then E = ae + bD
is a regular difference cover if and only if t = p+1

2 , f = p−1
2 and hence D is a partial

difference set with Paley parameters (p4, p4−1
2 , p4−5

4 , p4−1
4 ).

Proof. For the above partial difference set v = p4, k = (t + fp)(p2 − 1), λ =
p2 + (t + fp)2 − 3(t + fp), µ = (t + fp)2 − (t + fp). Hence µ− λ = 2(t + fp)− p2.
As µ− λ is odd, we will never get µ− λ = 2ab, for any a, b. Thus, we have to find
positive integers a and b such that

b(µ− λ) = 2a and a2 + b2(k − µ) = a + bk.

Substituting the values of k, µ− λ and b− µ and eliminating a, we get

b =
2[(µ− λ) + 2k]

(µ− λ)2 + 4(k − µ)
=

2(2t + 2fp− 1)
p2

.

Thus, p2|2t+2fp−1, where 3 ≤ t ≤ p+1 and 1 ≤ f ≤ p−1. So 2t+2fp−1 ≡ 0
(mod p) implies that 2t ≡ 1 (mod p) and hence t = (p+1)/2 and f = (p−1)/2. Thus
D is the partial difference set with parameters (p4, (p4−1)/2, (p4−5)/4, (p4−1)/4)
and b = 2, a = 1 is the only solution, i.e., E = e + 2D is the only regular difference
cover of this type. ¤
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Using Theorem 3.4 and Corollary 3.2 of [10], we immediately get:

Corollary 3.8. Let D be either the partial difference set in Zr
p2 with parameters

(p2r, (p2r−1)/2, (p2r−5)/4, (p2r−1)/4) or the partial difference set in Z4a
p2 ×Z4b

p ,
with a + b a power of 2 and with parameters (p4a+4b, (p4a+4b − 1)/2, (p4a+4b −
5)/4, (p4a+4b−1)/4). Then E = e+2D is a regular difference cover with parameters
(p2r, p2r, p2r−1) in Zr

p2 or with parameters (p4a+4b, p4a+4b, p4a+4b−1) in Z4a
p2 ×Z4b

p .

Remark 3.9. We finally note that it is not possible either to construct regular
difference covers of the form E = ae + bD from the partial difference sets D,
constructed in [14] with parameters (p2t, r2(pt−1), pt +r2

2−3r2, r
2
2−r2), r2 = lpt−s,

1 ≤ l ≤ ps, s is a positive divisor of t, s < t, for any prime p > 2. Indeed, using
Lemma 3.6, we need to find positive integers a and b such that b(µ − λ) = 2a and
a2 + b2(k − µ) = a + bk. It follows that b = 2(2lpt−s − 1)/pt. As s|t and 1 ≤ s ≤ t,
it is not possible to choose any integer b satisfying the above requirements, for any
odd prime p.

We close this paper by making a final remark on how regular difference covers
lead to certain self-dual codes, with a small example.

Example 3.10. Let D be the difference cover with parameters (9, 19, 38) given by
D = 4g2 + 2g3 + 4g4 + 2g5 + 2g6 + 2g7 + 3g8 where G = 〈g〉 is the cyclic group
of order 9. Define E = D − G. Then EE(−1) = 19 + 9G. Let M be the 9 × 9
circulant matrix whose first row is given by the coefficients of E. Then MMT has
all its diagonal entries 28 and off-diagonal entries 9. Let N be the 10 × 10 matrix
obtained from M where the first row of N is (0, 1, 1, 1, · · · , 1) and its first column
is (0, 1, 1, 1, · · · , 1)T . Then NNT is the matrix having (9, 29, 29, · · · , 29) as its di-
agonal and all of whose off-diagonal entries being 10. It is easy to see that [I10|N ]
is the generator matrix of a self-dual code over Z5.

Remark 3.11. The above example has an obvious generalization to other classes
of self-dual codes over small prime fields.
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