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Abstract. Here we define Central separable semialgebras and to prove some structure

theorems for central separable cancellative, semialgebras over a commutative and cancella-

tive semiring.

0. Introduction

In this paper our main aim is to define, Central separable seimalgebras and to
develop partially, the structure theory for central separable cancellative, semialge-
bras over a commutative, cancellative semiring, so that one can give some computer
applications in the theory of Brauer group of a commutative, cancellative semiring
R.

While developing the structure theory for central separable cancellative, semi-
algebras, we use some results, which we have proved in [6].

1. Preliminaries

A set R together with two binary operations called addition (+) and multi-
plication (·) is called a semiring, provided (R, +) is an additive abelian monoid
with identity element OR, (R, ·) is a semigroup and multiplication distributes over
addition from left and from the right.

An element a of a semiring R is said to be cancellable if and only if a + b =
a + c ⇒ b = c. Denote the set of all cancellable element of R by K+(R). If
K+(R) = R, then the semiring R is called a cancellative semiring.

An R-semialgebra A is a semiring which is also an R-semimodule satisfying the
condition a(xy) = (ax)y = x(ay) for any a in R and x, y in A.

Let R be a semiring. An R-semialgebra A is said to be semisubtractive if it is a
semisubtractive semimodule, that is, for any arbitrary x 6= y in A, either x + u = y
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for some u ∈ A or x = y + v for some v ∈ A, and is said to be zerosumfree if it is a
zerosumfree semimodule i.e., m + m′ = OM implies that m = m′ = 0.

Let R be any cancellative semiring. Define a relation “(a, b) ∼ (c, d)”if and only
if a + d = b + c. Then ‘∼’ is an equivalence relation on R×R. Denote equivalence
class of (a, b) by [a, b] and

Re = {[a, b]/a, b ∈ R}.

Define the binary operations addition and multiplication in Re as

[a, b] + [c, d] = [a + c, b + d]

and
[a, b][c, d] = [ac + bd, ad + bc].

Re forms a ring with respect to the above well defined operations, Re is called the
ring of differences with a zero element [a, a] for any a in R and the additive inverse
of [a, b] is [b, a] for any a, b in R. In this case if f : R ⇒ Re defined by f(a) = [a, 0]
for any a in R, then f is well defined and injective whenever R is cancellative.
Similarly Me is called module of differences of any cancellative semimodule M over
any cancellative semiring R.

Let R be any cancellative semiring. If I is a left [right] ideal of R, then

Ie = {[a, b]/a, b ∈ I}

is a left [right] ideal of Re. Conversely, if J is a left [right] ideal of Re, then

Jc = {a ∈ R/[a, 0] ∈ J}

is a left [right] ideal of R.

Proposition 1.1 ([6]).

(a) Let R be a cancellative semiring. Then for any k-ideal I of R, I = (Ie)c.

(b) Let R be a cancellative semiring and I be a proper k-ideal of R then Ie is a
proper ideal of Re.

(c) If I, I ′ are any two k-ideals of a cancellative semiring R and I ⊂ I ′, then
Ie ⊂ I

′e.

(d) Let R be a cancellative semiring. Then for any two ideals J and J ′ of Re, J ⊂
J ′ ⇒ Jc ⊂ J

′c.

Proposition 1.2 ([6]). Let R be a cancellative, semisubtractive semiring. Then
for any ideal J of Re, J = (Jc)e.

Proposition 1.3 ([2]). Let R be a cancellative semiring, M be a cancellative right
R-semimodule and N be a cancellative left R-semimodule. Then Me ⊗Re Ne ∼=
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(M ⊗R N)e.

Remark. For any modules M and N over a commutative ring R, one can easily
verify that (M ⊗R N)c = M c ⊗N c.

Proposition 1.4 ([2]). Let R be a semiring and P be a left R-semimodule. If P
is R-projective then P e is Re-projective.

Throughout A will denote a not necessarily commutative R-semialgebra and R
is a commutative semiring with 1.

Proposition 1.5 ([2]). Let R be a commutative semiring and let A and B be
R-semialgebras. Let M be a finitely generated and projective A-semimodule and
let N be a finitely generated and projective B-semimodule. Then HomA(M, M) ⊗
HomB(N, N) ∼= HomA⊗B(M ⊗N, M ⊗N) (where ⊗ = ⊗R).

Generator and Progenerator are as defined in [1], [3].

Morita Theorem 1.6 ([1]). Let R be any cancellative semiring, M be any cal-
cellative left R-semimodule and left R progenerator. Set a cancellative semiring
S = HomR(M,M) and a cancellative semimodule M∗ = HomR(M, R). Then the
functors

( )⊗R M : cs mod −R ⇒ S − cs mod,

M∗ ⊗S ( ) : S − cs mod ⇒ cs mod −R

(where cs mod −R and S− cs mod respectively denote the categories of cancellative
right R-semimodules and cancellative left S-semimodules) are inverse equivalences.

Corollary 1.7. In the setting of the Proposition 1.6, we have R ∼= Homs(M, M)
(as semirings) under the mapping which associates to an element r of R the endo-
morphism of M induced by scalar multiplication by r.

For any R-semialgebra A, we shall let A0 denote the opposite semialgebra of
A, whose underlying additive semigroup is A, multiplication is a0b0 = (ba)0 and the
R-semimodule structure coincides with A (to avoid confusion, for any element a ∈ A,
while considering an element in A0 we shall denote it by a0). The enveloping
semialgebra is defined by A⊗A0.

For convenience we will write AE for the enveloping semialgebra A⊗A0 of A.

Remark. A⊗A0 is a cancellative R-semimodule.
The semialgebra A has a structure as a left AE-semimodule induced by (a ⊗

b0)x = axb. If A is a cancellative R-semialgebra then a map µ from semialgebra
AE onto A given by

µ(
∑

i

ai ⊗ b0
i ) =

∑

i

aibi,

µ is a left AE-semimodule homomorphism, which in case A is commutative is a
semiring homomorphism.
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Definition 1.8. A cancellative R-semialgebra A is said to be R-separable if µ splits
as an AE-homomorphism or equivalently A is a retract of AE (i.e., there exists an
AE-homomorphism ρ : A ⇒ AE such that µρ = IdA).

Proposition 1.9 ([2]). Let A be a cancellative R-semialgebra. Then A is R-
separable if and only if there exists an element e in AE satisfying µ(e) = 1 and
(1⊗ a0)e = (a⊗ 10)e for any a in A.

The element e in AE in the above proposition is called separability idempo-
tent of A and is indeed idempotent.

Proposition 1.10 ([2]). Let R be a cancellative semiring and let A be a cancella-
tive, zerosumfree and semisubtractive R-semialgebra. Then A is AE-projective if
and only if µ splits as an AE-homomorphism (i.e., A is a retract of AE).

Remark. From Proposition 1.10, we conclude that a cancellative, semisubtractive
and zerosumfree R-semialgebra A is separable if A is AE-projective.

Proposition 1.11 ([2]). HomAE (A,A) ∼= C(A) the center of A under the corre-
spondence f ⇒ f(1).

2. Central separable seimalgebras

An R-semialgebra A is called central if A is faithful as an R-semimodule and
R.1 coincides with the center of A. We call A is a central separable R-semialgebra
if A is both central and separable.

For any cancellative R-semialgebra A, we have seen that A is naturally a left
AE-semimodule. This structure induces an R-semialgebra homomorphism φ from
AE to HomR(A,A) by associating to any element α in AE , the element φ(α) ∈
HomR(A,A), which is scalar multiplication in A by α. If α =

∑
i

ai ⊗ b0
i , then

φ(α)(a) = α · a =
∑
i

aiabi.

Proposition 2.1 ([2]). Let R be a cancellative semiring and let A and B be
cancellative, R-semialgebras. If A and B are central separable over R, then A⊗B
is a central separable R-semialgebra.

Lemma 2.2. Let R be a cancellative semiring and let A be a cancellative and
semisubtractive R-semialgebra. Then C(Ae) = (C(A))e.

Proof. C(Ae) = {[a, b] ∈ Ae/[a, b][c, d] = [c, d][a, b] ∀ [c, d] ∈ Ae}.
(C(A))e = {[a, b] ∈ Ae/a, b ∈ C(A)}

= {[a, b] ∈ Ae/ax = xa and by by = yb ∀ x, y ∈ A}.
Suppose that

[a, b] ∈ (C(A))e ⇒ [a, b] = [l, m] such that l, m ∈ C(A)
⇒ lx = xl, my = ym ∀ x, y ∈ A



A Note on Central Separable Cancellative Semialgebras 599

⇒ [l,m][x, y] = [lx + my, ly + mx]
= [xl + ym, yl + xm]
= [x, y][l, m] ∀ [x, y] ∈ Ae

⇒ [l,m] ∈ C(Ae)
⇒ [a, b] ∈ C(Ae).

Thus
(C(A))e ⊆ C(Ae).

Conversely, suppose that [a, b] ∈ C(Ae)

⇒ [a, b][x, y] = [x, y][a, b], ∀[x, y] ∈ Ae = A ∪ −A ∪ {0} (∗)

as A is semisubtractive.
Since A is semisubtractive, we will consider the following cases.

Case (1) : Suppose [a, b] = [u, 0] for some u ∈ A and every [x, y] = [v, 0] or
[x, y] = [0, v], ∀v ∈ A.

Then from (∗)

uv = vu, ∀ v ∈ A

⇒ u ∈ C(A)
⇒ [u, 0] ∈ (C(A))e

⇒ [a, b] ∈ (C(A))e.

Case (2) : Suppose [a, b] = [0, u] for some u ∈ A and every [x, y] = [0, v] or
[x, y] = [v, 0], ∀v ∈ A.

Then from (∗)

uv = vu, ∀ v ∈ A

⇒ u ∈ C(A)
⇒ [u, 0] ∈ (C(A))e

⇒ [a, b] ∈ (C(A))e.

Thus for either cases
C(Ae) ⊆ (C(A))e.

Hence C(Ae) = (C(A))e. ¤

Lemma 2.3. Let R be a cancellative semiring and let A be a cancellative, semisub-
tractive and zerosumfree R-semialgebra. If A is central separable over R then Ae is
central separable over Re.

Proof. If A is AE-projective then Ae is (AE)e ∼= (Ae)E-projective. This shows that
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Ae is Re-separable. Now we claim that, Ae is Re-central if A is R-central. Let A
be R-central. Then C(A) = R

⇒ (C(A))e = Re

⇒ (C(Ae) = Re

⇒ Ae is Re − central.

Also AnnRe(Ae) = 0 if AnnR(A) = 0.
Hence Ae is central separable over Re. ¤

Lemma 2.4. Let R be a cancellative semiring and let A be a cancellative, semisub-
tractive and zerosumfree R-semialgebra. If A is an AE-progenerator and R-central
then A is central separable over R.

Proof. If A is an AE-progenerator, then A is AE-projective. Since A is cancella-
tive, semisubtractive and zerosumfree R-semialgebra, by Proposition 1.6, A is R-
separable. Hence A is central separable over R. ¤

Lemma 2.5. Let R be a cancellative semiring and let A be a cancellative R-
semialgebra. If A is an AE-progenerator and A is R-central then A is an R-
progenerator and the map φ : AE ⇒ HomR(A,A) is an isomorphism.

Proof. If A is R-central then we have HomAE (A,A) ∼= R. If A is an AE-
progenerator, then

A∗ ⊗HomAE (A,A) A ∼= AE

and

A∗ ⊗AE A ∼= HomAE (A,A)
⇒ HomAE (A,AE)⊗HomAE (A,A) A ∼= AE

and

HomAE (A,AE)⊗AE A ∼= HomAE (A, A)
⇒ A is an HomAE (A,A)-progenerator
⇒ A is an R-progenerator.

Moreover AE would then by isomorphic to HomR(A,A) by Corollary 1.7 to the
Morita theorem, under left multiplication, which is precisely the map φ. ¤

Lemma 2.6. Let R be a cancellative semiring and let A be a cancellative R-
semialgebra. If A is an R-progenerator and the map φ : AE ⇒ HomR(A,A) is an
isomorphism, then A is an AE-progenerator and A is R-central.

Proof. A is an AE-progenerator if A is an R-progenerator, and the map φ : AE ⇒
HomR(A,A) is an isomorphism implies that C(A) = HomAE (A,A) ∼= R. Hence A
is an AE-progenerator and R-central. ¤

These lemmas now give the following important theorem.
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Theorem 2.7. Let R be a cancellative semiring and let A be a cancellative, semisub-
tractive and zerosumfree R-semialgebra. Then the following conditions are equiva-
lent.

(a) A is central separable over R.

(b) A is an R-progenerator and the map φ from AE to HomR(A,A) is an iso-
morphism.

Proof. A is an R-progenerator and AE ∼= HomR(A,A) implies that A is central
separable over R by above lemmas. Hence b ⇒ a.

Conversely, assume that A is central separable over R. Claim that A is an
R-progenerator and AE ∼= HomR(A, A). By Proposition 1.10, A is AE-projective
and it is obvious that 1 generates A over AE . What remains to show that A is an
AE-generator. A is central separable over R, implies that Ae is central separable
over Re by Lemma 2.3.

Therefore Ae is an (AE)e ∼= (Ae)E-generator,

⇒ (A∗)e ⊗Re Ae ∼= (AE)e,

where A∗ = HomAE (A,AE) and R = HomAE (A,A)
⇒ [(A∗)e ⊗Re Ae]c ∼= [(AE)e]c

⇒ (A∗)ec ⊗R Aec ∼= (AE)ec

⇒ (A∗)⊗R A ∼= (AE),
where A∗ = HomAE (A,AE) and R = HomAE (A,A)

⇒ A is an AE-generator.

Thus A is an AE-progenerator and R-central.
Hence by Lemma 2.5, A is an R-progenerator and AE ∼= HomR(A,A), that is,

(a) ⇒ (b). ¤
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