GENERALIZED T-SPACES AND DUALITY

YEON SOO YOON

Abstract. We define and study a concept of T_A -space which is closely related to the generalized Gottlieb group. We know that X is a T_A -space if and only if there is a map $r: L(A,X) \to L_0(A,X)$ called a T_A -structure such that $ri \sim 1_{L_0(A,X)}$. The concepts of $T_{\Sigma B}$ -spaces are preserved by retraction and product. We also introduce and study a dual concept of T_A -space.

1. Introduction

Let A be a compact CW complex. Let L(A, X) be the space of maps from A to X with the compact open topology. Let $L_0(A, X)$ be the space of base point preserving maps in L(A, X). Throughout this paper, space means a space of homotopy type of connected locally finite CW complex. According to a well known result of Milnor [8], L(A, X) and $L_0(A, X)$ have the homotopy type of CW complexes. Clearly the evaluation map $p: L(A, X) \to X$ is a fibration. In 1987, Aguade introduced and studied T-spaces in [1]. A space X is called [1] a T-space if the fibration $L_0(S^1, X) \to L(S^1, X) \to X$ is fibre homotopically trivial. It is easy to show that any H-space is a T-space. However, there are many T-spaces which are not H-spaces in [11]. ΣX denote the reduced suspension of X and ΩX denote the based loop space of X. The adjoint functor from the group $[\Sigma X, Y]$ to the group $[X, \Omega Y]$ will be denoted by

Received January 16, 2005. Revised February 22, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 55P45, 55P35.

Key words and phrases: T-space, co-T-spaces, cyclic maps, cocyclic maps.

^{*} This work was supported by Hannam University Research Fund, 2004.

 τ . The symbols e and e' denote $\tau^{-1}(1_{\Omega X})$ and $\tau(1_{\Sigma X})$ respectively. On the other hand, we introduced and studied co-T-spaces in [11]. A space X is called co-T-space [11] if $e': X \to \Omega \Sigma X$ is cocyclic. It is also easy to show that any co-H-space is a co-T-space.

In this paper, we introduce a T_A -space which is a generalization of T-space, and study some properties of a T_A -space. Also, we introduce and study some properties of a co- T_A -space which is a dual concept of T_A -space. In section 2, we show that X is a T_A -space if and only if there is a map $r: L(A,X) \to L_0(A,X)$ such that $ri \sim 1_{L_0(A,X)}$. We call such a retraction r a T_A -structure. The set S_{T_A} of homotopy classes of T_A -structures can be identified to the Gottlieb set $G(X, L_0(A, X))$. We show that any H-space is a T-space, and any T-space is a $T_{\Sigma B}$ -space for any compact space B. We also show that if a $T_{\Sigma B}$ -space X dominates Y, then Y is also a $T_{\Sigma B}$ -space. Moreover, we know that $X \times Y$ is a $T_{\Sigma B}$ space if and only if X and Y are $T_{\Sigma B}$ -spaces. We know that for any $[f],\ [g]\in\pi_3(S^2),\ L(S^3,S^2;f)$ and $L(S^3,S^2;g)$ have the same homotopy type. In section 3, we introduce and study a co- T_A -space which is a dual concept of T_A -space. We show that if a co- T_A -space X dominates Y, then Y is also a co- T_A -space. Also, we show that $X \vee Y$ is a co- T_A -space if and only if X and Y are co- T_A -spaces.

2. T_A -spaces and some properties

In this section, we introduce a T_A -space which is a generalization of T-space, and study some properties of a T_A -space. A based map $f \colon B \to X$ is called $\operatorname{cyclic}[10]$ if there exists a map $F \colon X \times B \to X$ such that $Fj \sim \nabla(1 \vee f)$, where $j \colon X \vee B \to X \times B$ is the inclusion and $\nabla \colon X \vee X \to X$ is the folding map. We call such a map F an associated map of f. The $\operatorname{Gottlieb}$ set denoted G(B,X) is the set of all homotopy classes of cyclic maps from B to X. In 1982, Lim obtained a result [6] which was an H-space may be characterized by the Gottlieb

sets and cyclic maps as follows; X is an H-space if and only if 1_X is cyclic if and only if G(B,X) = [B,X] for any space B. It is known [10] that if $g: X \to Y$ is cyclic and $f: A \to X$ is any map, then $gf: A \to Y$ is cyclic. From the above fact, we can obtained a result [11] which characterizes a T-space by means of the Gottlieb sets and cyclic maps as follows; X is an T-space if and only if $e: \Sigma \Omega X \to X$ is cyclic if and only if $G(\Sigma C, X) = [\Sigma C, X]$ for any space C. For a co-H-space X, there is a map $s: X \to \Sigma \Omega X$ such that $es \sim 1$. Thus we can easily know that in the category of co-H-spaces, H-spaces and T-spaces are equivalent. It is also well known [16] that X is an H-space if and only if for any spaces $M, L, i^*: [M \times L, X] \to [M \vee L, X]$ is surjective, where $i: M \vee L \to M \times L$ is the inclusion.

For a locally compact space A, it is well known fact that there is a natural equivalence $\tau: [A \wedge B, X] \approx [B, L_0(A, X)]$ given by $(\tau(f)(b))(a) = f < a, b >$. From now on, let A be a compact CW complex.

Theorem 2.1. The followings are equivalent;

- (1) $e_A: A \wedge L_0(A, X) \to X$ is cyclic, where $e_A = \tau^{-1}(1_{L_0(A, X)})$.
- (2) $G(A \wedge B, X) = [A \wedge B, X]$ for any space B.
- (3) For any spaces $M, L, i^* : [M \times (A \wedge L), X] \rightarrow [M \vee (A \wedge L), X]$ is surjective.

PROOF. (1) implies (2). Let $f: A \wedge B \to X$ be a map. Then we know, from the fact that $f = e_A(1 \wedge \tau(f))$ and e_A is cyclic, that $f: A \wedge B \to X$ is cyclic. (2) implies (3). Let $f: M \vee (A \wedge X) \to X$ be a map. Let $f_1 = f_{|M|}: M \to X$ and $f_2 = f_{|A \wedge X}: A \wedge X \to X$. Since f_2 is cyclic, there is a map $F: X \times (A \wedge X) \to X$ such that $F_j \sim \nabla(1 \vee f_2)$. Let $g = F(f_1 \times 1): M \times (A \wedge L) \to X$. Then $i^*[g] = [gi] = [F(f_1 \times 1)i] = [f]$ and $i^*: [M \times A \wedge L, X] \to [M \vee A \wedge L, X]$ is surjective. (3) implies (1). Take M = X and $L = L_0(A, X)$. Consider $\nabla(1 \vee e_A): X \vee (A \wedge L_0(A, X)) \to X$. Since i^* is an epimorphism, there

is a map $E: X \times (A \wedge L_0(A, X)) \to X$ such that $Ei \sim \nabla(1 \vee e_A)$. Thus e_A is cyclic.

Definition 2.2. Let A be a compact CW complex. A space X is called a T_A -space if the fibration $L_0(A,X) \to L(A,X) \to X$ is fibre homotopically trivial.

Proposition 2.3. [2] Let $p: E \to B, p': E' \to B$ be fibrations and $h: E \to E'$ a map with p'h = p. Then

- (1) $h: E \to E'$ is a fiber homotopy equivalence if and only if the restriction of h to every fiber, $b \in B$, $h_{|p^{-1}(b)}: p^{-1}(b) \to p'^{-1}(b)$ is a homotopy equivalence.
- (2) $h: E \to E'$ is a fiber homotopy equivalence if and only if $h: E \to E'$ is a homotopy equivalence.

Remark 2.4. From the above result, it is clear that X is a T_A -space if and only if there is a homotopy equivalence $h: L(A, X) \to X \times L_0(A, X)$ such that the diagram

$$\begin{array}{cccc} L_0(A,X) & \stackrel{i}{---} & L(A,X) & \stackrel{p}{---} & X \\ & \parallel & & \downarrow & & \parallel \\ L_0(A,X) & \stackrel{i_2}{---} & X \times L_0(A,X) & \stackrel{p_1}{---} & X \end{array}$$

is homotopy commutative.

Theorem 2.5. X is a T_A -space if and only if there is a map $r: L(A,X) \to L_0(A,X)$ such that $ri \sim 1_{L_0(A,X)}$.

PROOF. Suppose that X is a T_A -space. Then by the above remark, there is a homotopy equivalence $h: L(A, X) \to X \times L_0(A, X)$ such that $hi \sim i_2$. Let

$$r: L(A,X) \xrightarrow{h} X \times L_0(A,X) \xrightarrow{p_2} L_0(A,X).$$

Then $ri = p_2 hi \sim p_2 i_2 \sim 1_{L_0(A,X)}$. On the other hand, suppose that there is a map $r: L(A,X) \to L_0(A,X)$ such that $ri \sim 1_{L_0(A,X)}$. Define

 $h: L(A,X) \to X \times L_0(A,X)$ by h(f) = (p(f),r(f)). Then we have the following homotopy commutative diagram;

$$\begin{array}{cccc} L_0(A,X) & \xrightarrow{i} & L(A,X) & \xrightarrow{p} & X \\ & & & \downarrow & & \parallel \\ L_0(A,X) & \xrightarrow{i_2} & X \times L_0(A,X) & \xrightarrow{p_1} & X. \end{array}$$

Thus h induces an isomorphism of homotopy groups, and as all spaces are homotopy equivalent to CW complexes, it follows that h is a homotopy equivalence. Moreover we have $p_1h = p$. Thus we know, from the result of Dold, that h is a fibre homotopy equivalence.

For a T_A -space X, a retraction $r: L(A,X) \to L_0(A,X)$ is called a T_A -structure on X. It is clear that a T_A -space will in general admit many different T_A -structures. The set S_{T_A} of homotopy classes of T_A -structures can be identified to the Gottlieb set $G(X, L_0(A,X))$.

Theorem 2.6. Let X be a T_A -space. Then there is a bijection $\phi: S_{T_A} \to G(X, L_0(A, X))$, where $S_{T_A} = \{[r] \in [L(A, X), L_0(A, X)] | r \circ i \sim 1_{L_0(A, X)}\}$.

PROOF. Since X is a T_A -space, there is a homotopy equivalence $h: L(A,X) \to X \times L_0(A,X)$ such that $h \circ i \sim i_2$. Let $k: X \times L_0(A,X) \to L(A,X)$ be a homotopy inverse of h. Define a map $\phi: S_{T_A} \to G(X,L_0(A,X))$ by $\phi([r]) = [r \circ k \circ i_1]$, where $i_1: X \to X \times L_0(A,X)$ is the inclusion. Since $r \circ k_{|L_0(A,X)} = r \circ k \circ i_2 \sim r \circ i \sim 1_{|L_0(A,X)}$ and $r \circ k: X \times L_0(A,X) \to L_0(A,X)$, $\phi([r]) = [r \circ k \circ i_1] = [r \circ k_{|X}] \in G(X,L_0(A,X))$. On the other hand, define a map $\psi: G(X,L_0(A,X) \to S_{T_A})$ by $\psi([f]) = [F \circ h]$, where $F: X \times L_0(A,X) \to L(A,X)$ is an associated map of f. Since $F \circ h \circ i \sim F \circ i_2 \sim 1_{L_0(A,X)}$, $\psi([f]) = [F \circ h] \in S_{T_A}$. Moreover, we have that $\psi \circ \phi([r]) = \psi([r \circ k \circ i_1]) = [r \circ k \circ h] = [r] = 1([r])$ for any $[r] \in S_{T_A}$ and $\phi \circ \psi([f]) = \phi([F \circ h]) = [F \circ h \circ k \circ i_1] = [F \circ i_1] = [f] = 1([f])$ for any $[f] \in G(X,L_0(A,X))$. Thus we know that $\phi: S_{T_A} \to G(X,L_0(A,X))$ is a bijection.

The following theorem says that if X is an H-space, then X is a T_A -space for any compact CW complex A.

Theorem 2.7. If $e_A: A \wedge L_0(A,X) \to X$ is cyclic, then X is a T_A -space.

PROOF. Since $e_A: A \wedge L_0(A,X) \to X$ is cyclic, there exists a map $E: (A \wedge L_0(A,X)) \times X \to X$ of e_A such that $Ej = \nabla (e_A \vee 1_X)$. Consider the map

$$E \circ (q \times 1) : A \times L_0(A, X) \times X \xrightarrow{(q \times 1)} A \wedge L_0(A, X) \times X \xrightarrow{E} X,$$

where $q: A \times L_0(A, X) \to A \wedge L_0(A, X)$ is the quotient map. Let $k: L_0(A, X) \times X \to L(A, X)$ be the adjoint of $E \circ (q \times 1): A \times L_0(A, X) \times X \to X$. Then $pk = p_2$ and $i = ki_1$. Thus we know, by the result of Dold, that $k: L_0(A, X) \times X \to L(A, X)$ is a fiber homotopy equivalence and X is a T_A -space.

We do not know whether the converse of the above theorem holds. However, we showed [14] that the converse of the above theorem is true for the case of a suspension $A = \Sigma B$. Thus we know that a concept of $T_{\Sigma B}$ -space can be characterized by the generalized Gottlieb group.

Corollary 2.8. [14] X is a $T_{\Sigma B}$ -space if and only if $e_{\Sigma B}: \Sigma B \wedge L_0(\Sigma B, X) \to X$ is cyclic if and only if $G(\Sigma B \wedge C, X) = [\Sigma B \wedge C, X]$ for any space C.

Remark 2.9. Any T-space X is a $T_{\Sigma B}$ -space. Since X is a T-space, we have that $G(\Sigma C, X) = [\Sigma C, X]$ for any space C. Take $C = B \land L_0(\Sigma B, X)$. Then we know that the map $e_{\Sigma B} : \Sigma B \land L_0(\Sigma B, X) \to X$ is cyclic. Thus X is a $T_{\Sigma B}$ -space.

From the above remark, we know that any H-space is a T-space, and any T-space is a $T_{\Sigma B}$ -space for any compact space B.

Theorem 2.10. If a $T_{\Sigma B}$ -space X dominates Y, then Y is also a $T_{\Sigma B}$ -space.

PROOF. Since X dominates Y, there are maps $r: X \to Y$ and $i: Y \to X$ such that $ri \sim 1_Y$. Consider the commutative diagram

$$\begin{array}{ccc} \Sigma B \wedge L_0(\Sigma B, Y) & \xrightarrow{1 \wedge L_0(i)} & \Sigma B \wedge L_0(\Sigma B, X) \\ e^{Y}_{\Sigma B} \downarrow & & e^{X}_{\Sigma B} \downarrow \\ & Y & \xrightarrow{i} & X. \end{array}$$

Since $e_{\Sigma B}^X: \Sigma B \wedge L_0(\Sigma B, X) \to X$ is cyclic, $ie_{\Sigma B}^Y = e_{\Sigma B}^X(1 \wedge L_0(i)):$ $\Sigma B \wedge L_0(\Sigma B, Y) \to X$ is cyclic. It is known [10] that if $g: X \to Y$ has a right homotopy inverse and $f: A \to X$ is cyclic, then $gf: A \to Y$ is cyclic. Thus we have that $e_{\Sigma B}^Y \sim r(ie_{\Sigma B}^Y): \Sigma B \wedge L_0(\Sigma B, Y) \to Y$ is cyclic and Y is a $T_{\Sigma B}$ -space.

Theorem 2.11. $X \times Y$ is a $T_{\Sigma B}$ -space if and only if X and Y are $T_{\Sigma B}$ -spaces.

PROOF. Suppose $X \times Y$ is a $T_{\Sigma B}$ -space. Then we know, from the above theorem, that X and Y are $T_{\Sigma B}$ -spaces. On the other hand, let X and Y be $T_{\Sigma B}$ -spaces. We show that $G(\Sigma B \wedge C, X \times Y) = [\Sigma B \wedge C, X \times Y)$ for any space C. Let $f: \Sigma B \wedge C \to X \times Y$ be a map. Since X and Y are $T_{\Sigma B}$ -spaces, $p_1 f: \Sigma B \wedge C \to X$ and $p_2 f: \Sigma B \wedge C \to Y$ are cyclic maps. It is known [6] that if $f_1: A_1 \to X_1$ and $f_2: A_2 \to X_2$ are cyclic, then so is $f_1 \times f_2: A_1 \times A_2 \to X_1 \times X_2$. Thus $f = (p_1 f \times p_2 f) \Delta: \Sigma B \wedge C \to X \times Y$ is cyclic.

Example 2.12. $S^1 \times S^1$, $S^1 \times S^3$, $S^3 \times S^7$, \cdots are T_{S^1} -spaces (equivalently T-spaces) because S^1 , S^3 , S^7 are T_{S^1} -spaces.

Theorem 2.13. If there exists a space Y such that X is a homotopy equivalent to $K \times Y$ for a $T_{\Sigma B}$ -space K, then there are maps $r: X \to K$ and $i: K \to X$ such that $ri \sim 1$ and $ie_{\Sigma B}^K: \Sigma B \wedge L_0(\Sigma B, K) \to X$ is cyclic.

PROOF. Let $f: X \to K \times Y$, $g: K \times Y \to X$ be maps such that $gf \sim 1_X$ and $fg \sim 1_{K \times Y}$. Let $f = P_1 f: X \to K$ and $f = gi_1: K \to X$, where

 $i_1: K \to K \times Y$ is the inclusion and $p_1: K \times Y \to K$ be the projection. Then $ri = p_1 f g i_1 \sim p_1 i_1 = 1_K$. Moreover we have, from the fact that K is a $T_{\Sigma B}$ -space, that there exist a map $E: \Sigma B \wedge L_0(\Sigma B, K) \times K \to K$ such that $ej = \nabla (e_{\Sigma B}^K \vee 1)$. Consider the map $F = g \circ (E \times 1) \circ (1 \times f): \Sigma B \wedge L_0(\Sigma B, K) \times X \to X$. Then $Fj' \sim \nabla (ie_{\sigma B}^K \vee 1)$. Thus $ie_{\sigma B}^K: \Sigma B \wedge L_0(\Sigma B, K) \to X$ is cyclic.

For a based map $f \colon A \to X$, let L(A,X;f) be the path component of L(A,X) containing f. $L_0(A,X;f)$ will denote the space of base point preserving maps in L(A,X;f). In general, the components of $L(\Sigma B,X)$ almost never have the same homotopy type. It is well known fact that $L(S^2,S^2;*)$ and $L(S^2,S^2;1)$ have different homotopy type. Under what condition on X, do $L(\Sigma B,X;f)$ and $L(\Sigma B,X;g)$ have the same homotopy equivalence for any $[f], [g] \in L_0(\Sigma B,X)$? For any $[f] \in L_0(\Sigma B,X)$, clearly the evaluation map $p \colon L(\Sigma B,X;f) \to X$ is a fibration with fiber $L_0(\Sigma B,X;f)$.

Proposition 2.14. [12] The following statements are equivalent;

- (1) $f: \Sigma B \to X$ is cyclic.
- (2) $L(\Sigma B, X; f)$ is fiber homotopy equivalent to $L(\Sigma B, X; *)$.

We have, from the fact that X is an H-space iff G(C, X) = [C, X] for any space C, the following corollary.

Corollary 2.15. [4] If X is an H-space, then $L(S^p, X; f)$ and $L(S^p, X; g)$ have the same homotopy type for arbitrary f and g in $\pi_p(X)$.

Moreover, we know, from the fact that the generator $\eta_2 \in \pi_3(S^2)$ is cyclic and the sum of two cyclic maps is cyclic, that $G(S^3, S^2) = [S^3, S^2]$. Thus we have the following corollary.

Corollary 2.16. For any [f], $[g] \in \pi_3(S^2)$, $L(S^3, S^2; f)$ and $L(S^3, S^2; g)$ have the same homotopy type.

Lemma 2.17. [5] For any $[f] \in L_0(\Sigma B, X)$, $L_0(\Sigma B, X; f)$ is homotopy equivalent to $L_0(\Sigma B, X; *)$.

Lemma 2.18. [13] If X is a $T_{\Sigma B}$ -space, then any $[f] \in L_0(\Sigma B, X)$, the fibration $L_0(\Sigma B, X; f) \to L(\Sigma B, X; f) \to X$ is fibre homotopically trivial.

From the above two lemmas, we have an answer of the above question as follows;

Proposition 2.19. If X is a $T_{\Sigma B}$ -space, for any [f], $[g] \in L_0(\Sigma B, X)$, $L(\Sigma B, X; f)$ and $L(\Sigma B, X; g)$ have the same homotopy type.

3. co- T_A -spaces and some properties

In this section, we would like to study some properties of co- T_A -space which is a dual concept of T_A -space.

A based map $f \colon X \to A$ is called cocyclic[10] if there exists a map $\phi \colon X \to X \lor A$ such that $j\phi \sim (1 \times f)\Delta$, where $j \colon X \lor A \to X \times A$ is the inclusion and $\Delta \colon X \to X \times X$ is the diagonal map. We call such a map ϕ a coassociated map of f. The dual Gottlieb set denoted DG(X,A) is the set of all homotopy classes of cocyclic maps from X to A.

A space X is called co-T-space [11] if $e': X \to \Omega \Sigma X$ is cocyclic. It is also easy to show that any co-H-space is a co-T-space.

In 1987, Lim also obtained a result [7] which was a co-H-space may be characterized by the dual Gottlieb sets and cocyclic maps as follows; X is a co-H-space if and only if $1_X: X \to X$ is cocyclic if and only if DG(X,C) = [X,C] for any space C. It is known [10] that if $f: X \to A$ is cocyclic and $g: A \to B$ is any map, then $gf: X \to B$ is cocyclic. From this fact, we can obtained a result [11] which characterizes a co-T-space by means of the dual Gottlieb sets as follows; X is a co-T-space if and only if $GD(X,\Omega B) = [X,\Omega B]$ for any space B.

Definition 3.1. A space X is called co- T_A -space if $e'_A: X \to L_0$ $(A, A \wedge X)$ is cocyclic, where $e'_A = \tau(1_{A \wedge X})$.

Theorem 3.2. The followings are equivalent;

- (1) X is a co- T_A -space.
- (2) $DG(X, L_0(A, B)) = [X, L_0(A, B)]$ for any space B.
- (3) For any spaces $M, L, i_* : [X, M \vee L_0(A, L)] \to [X, M \times L_0(A, L)]$ is surjective, where $i : M \vee L_0(A, L) \to M \times L_0(A, L)$ is the inclusion.

PROOF. (1) implies (2). Let $f: X \to L_0(A, B)$ be a map. Then there is a map $\tau^{-1}(f): A \wedge X \to B$. Then we know, from the fact that $f = L_0(\tau^{-1}(f)) \circ e'_A$ and e'_A is cocyclic, that $f: X \to L_0(A, B)$ is cocyclic. (2) implies (3). Let $f: X \to M \times L_0(A, L)$ be a map. Let $f_1 = p_1 f: X \to M$ and $f_2 = p_2 f: X \to L_0(A, L)$. Since f_2 is cocyclic, there is a map $\theta: X \to X \vee L_0(A, L)$ such that $j\theta \sim (1 \times f_2)\Delta$. Let $g = (f_1 \vee 1)\theta: X \to M \vee L_0(A, L)$. Then $i_*([g]) = [ig] = [i(f_1 \vee 1)\theta] = [f]$ and $i_*: [X, M \vee L_0(A, L)] \to [X, M \times L_0(A, L)]$ is surjective. (3) implies (1). Take M = X and $L = A \wedge X$. Consider $(1 \times e'_A)\Delta: X \to X \times L_0(A, A \wedge X)$. Since i_* is an epimorphism, there is a map $\theta: X \to X \vee L_0(A, A \wedge X)$ such that $j\theta \sim (1 \times e'_A)\Delta$. Thus $e'_A: X \to L_0(A, A \wedge X)$ is cocyclic.

Corollary 3.3. If X is a co-H-space, then for any space A, X is a $co-T_A$ -space.

Corollary 3.4. If X is a co-T-space, then for any space B, X is a $co-T_{\Sigma B}$ -space.

PROOF. Let C be any space. Then there is a homoeomorphism $h: L_0(\Sigma B, C) \to \Omega L_0(B, C)$ given by h(f)(s)(b) = f(< s, b > . Let $f: X \to L_0(\Sigma B, C)$ be a map. Since X is co-T-space, $[X, \Omega L_0(B, C)] = DG(X, \Omega L_0(B, C))$. Thus we know that $hf: X \to \Omega L_0(B, C)$ is cocyclic and $f = h^{-1}(hf): X \to L_0(\Sigma B, C)$ is cocyclic. Therefore X is a co- $T_{\Sigma B}$ -space.

Thus we know that any co-H-space is a co-T-space, and any co-T-space is a co- $T_{\Sigma B}$ -space for any space B.

Theorem 3.5. If a co- T_A -space X dominates Y, then Y is also a co- T_A -space.

PROOF. Since X dominates Y, there are maps $r: X \to Y$ and $i: Y \to X$ such that $ri \sim 1_Y$. Consider the commutative diagram

$$X \xrightarrow{r} Y$$

$$e_A^{\prime X} \downarrow \qquad \qquad e_A^{\prime Y} \downarrow$$

$$L_0(A, A \wedge X) \xrightarrow{L_0(1 \wedge r)} L_0(A, A \wedge Y).$$

Since $e_A'^X: X \to L_0(A, A \wedge X)$ is cocyclic, $e_A'^Y r = L_0(1 \wedge r)e_A'^X: X \to L_0(A, A \wedge Y)$ is cocyclic. It is known [10] that if $f: X \to A$ is cocyclic and $i: Y \to X$ has a left homotopy inverse, then $fi: Y \to A$ is cocyclic. Thus we have that $e_A'^Y \sim (e_A'^Y r)i: Y \to L_0(A, A \wedge Y)$ is cocyclic and Y is a co- T_A -space.

Theorem 3.6. $X \vee Y$ is a co- T_A -space if and only if X and Y are co- T_A -spaces.

PROOF. Suppose $X \vee Y$ is a co- T_A -space. Let $r_1 = p_1 j : X \vee Y \to X$ and $r_2 = p_2 j : X \vee Y \to Y$, where $j : X \vee Y \to X \times Y$ is the inclusion and $p_1 : X \times Y \to X$, $p_2 : X \times Y \to Y$ are projections. Then $r_1 i_1 = 1_X$ and $r_2 i_2 = 1_Y$. Then we know, from the above theorem, that X and Y are co- T_A -spaces. On the other hand, let X and Y be co- T_A -spaces. Then $e_A^{\prime X}$ and $e_A^{\prime Y}$ are cocyclic maps. It is known [L2] that if $f : X \to A$ and $g : Y \to B$ are cocyclic, then so is $f \vee g : X \vee Y \to A \vee B$. Thus we know that $e_A^{\prime X} \vee e_A^{\prime Y} : X \vee Y \to L_0(A, A \wedge X) \vee L_0(A, A \wedge Y)$ is cocyclic. Let $h : A \wedge (X \vee Y) \to (A \wedge X) \vee (A \wedge Y)$ be the natural homeomorphism. Define a map $k : L_0(A, A \wedge X) \vee L_0(A, A \wedge Y) \to L_0(A, (A \wedge X) \vee (A \wedge Y))$ by $k(f, *) = i_1 \circ f$, $k(*, g) = i_2 \circ g$, where $i_1 : A \wedge X \to (A \wedge X) \vee (A \wedge Y)$, $i_2 : A \wedge Y \to (A \wedge X) \vee (A \wedge Y)$ are

natural inclusions. Then we have the following commutative diagram;

$$\begin{array}{ccc} X \vee Y & & \xrightarrow{e_A^{\prime X} \vee Y} & L_0(A, A \wedge (X \vee Y)) \\ e_A^{\prime X} \vee e_A^{\prime Y} & & & L_0(h) \end{array}$$

$$L_0(A, A \wedge X) \vee L_0(A, A \wedge Y) \xrightarrow{k} L_0(A, A \wedge X \vee A \wedge Y).$$

Since $e_A^{\prime X} \vee e_A^{\prime Y}$ is cocyclic and $L_0(h) \circ e_A^{\prime X \vee Y} = k \circ e_A^{\prime X} \vee e_A^{\prime Y}$, we know that $L_0(h) \circ e_A^{\prime X \vee Y}$ is cocyclic. Since $L_0(h)$ is a homotopy equivalence, we have that $e_A^{\prime X \vee Y} \sim L_0(h)^{-1} \circ L_0(h) \circ e_A^{\prime X \vee Y}$ is cocyclic and $X \vee Y$ is a co- T_A -space.

Theorem 3.7. If there exists a space Y such that X is a homotopy equivalent to $Y \vee K$ for a co- T_A -space K, then there are maps $r: X \to K$ and $i: K \to X$ such that $ri \sim 1$ and $e'^K_A r: X \to L_0(A, A \wedge K)$ is cocyclic.

PROOF. Let $f: X \to Y \vee K$, $g: Y \vee K \to X$ be maps such that $gf \sim 1_X$ and $fg \sim 1_{Y \vee K}$. Let $r = P_2 f: X \to K$ and $i = gi_2: K \to X$, where $i_2: K \to Y \vee K$ is the inclusion and $p_2: Y \vee K \to K$ be the projection. Then $ri = p_2 f gi_2 \sim p_2 i_2 = 1_K$. Moreover we have, from the fact that K is a co- T_A -space, that there exist a map $\mu: K \to K \vee L_0(A, A \wedge K)$ such that $j\mu \sim (1 \times e_A'^K)\Delta$. Consider the map $\rho = (g \vee 1) \circ (1 \vee \mu) \circ f: X \to X \vee L_0(A, A \wedge K)$. Then $j'\rho \sim (1 \times e_A'^K r)\Delta$. Thus $e_A'^K r: X \to L_0(A, A \wedge K)$ is cocyclic.

On the other hand, on the category of spaces of homotopy type of 1-connected locally finite CW complexes, we studied in [14] that some properties of T'-space which is another dual concept of T-space, and we also studied in [15] that some properties of T'_A which is a generalized concept of T'-space.

References

- [2] A. Dold, Partitions of unity in the theory of fibrations, Ann. Math. 78(2)(1963), 223-255.
- [3] H. B. Haslam, *G-spaces and H-spaces*, Ph. D. Thesis, Univ. of California, Irvine, 1969.
- [4] S. S. Koh, Note on the properties of the components of the mapping space X^{S^q} , Proc. Amer. Math. Soc., 11(1960), 896-904.
- [5] G. E. Lang, The Evaluation map and EHP sequences, Pacific J. Math., 44(1)(1973), 201-210.
- [6] K. L. Lim, On cyclic maps, J. Austral. Math. Soc., (Series A)32(1982), 349-357.
- [7] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30(1987), 63-71.
- [8] J. W. Milnor, On spaces having the homotopy type of a CW complex, Trans. Amer. Math. Soc. 90(1959), 272-280.
- [9] J. Stasheff, On homotopy abelian H-spaces, Proc. Camb. Phil. Soc. 57(1961), 734.
- [10] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33(1969), 141-164.
- [11] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc., (Series A)59(1995), 193-203.
- [12] Y. S. Yoon, On n-cyclic maps, J. Korean. Math. Soc., 26(1)(1989), 17-25.
- [13] Y. S. Yoon, Decomposable reduced tori, Math. Japonica, 39(3)(1994), 481-486.
- [14] Y. S. Yoon, Decomposability of Evaluation Fibrations, Kyungpook Math. J., 35(1995), 361-369.
- [15] Y. S. Yoon and J. O. Yu, Decomposable right half smash product spaces, Comm. Korean Math. Soc. 11(1996), 225-233.
- [16] A. Zabrodsky, Hopf Spaces, North-Holland Pub. Com. 1976.

Yeon Soo Yoon epartment of Mathematics Hannam University Daejeon 306-791, Korea

E-mail address: yoon@hannam.ac.kr