KYUNGPOOK Math. J. 45(2005), 539-547

Some Topologies Induced by *b*-open Sets

M. E. ABD EL-MONSEF, A. A. EL-ATIK AND M. M. EL-SHARKASY Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt e-mail: monsef@dr.com, aelatik@yahoo.com and sharkasy78@yahoo.com

ABSTRACT. The class of *b*-open sets in the sense of Andrijević ([3]), was discussed by El-Atik ([9]) under the name of γ -open sets. This class is closed under arbitrary union. The aim of this paper is to use Λ -sets and \vee -sets due to Maki ([15]) some topologies are constructed with the concept of *b*-open sets. *b*- Λ -sets, *b*- \vee -sets are the basic concepts introduced and investigated. Moreover, several types of near continuous function based on *b*- Λ -sets, *b*- \vee -sets are constructed and studied.

1. Introduction

Andrijević ([3]) introduced a new class of generalized open sets in a topological space, so called *b*-open sets. This type of sets discussed by El-Atik ([9]) under the name of γ -open sets. The class of b-open sets is contained in the class of semipreopen sets and contains all semi-open sets and preopen sets. The class of b-open sets generates the same topology as the class of preopen sets. In 1986, Maki ([15]) introduced the concept of generalized Λ -sets in a topological space and defined the associated closure operator by using the work of Levine ([14]) and Dunhem ([8]). Caldas and Dontchev ([7]) built on Maki's work by introducing Λ_s -sets, \vee_s -sets, $g\Lambda_s$ -sets and $g\vee_s$ -sets. Ganster and et. al. ([10]) introduced the notion of pre- Λ sets and pre- \lor -sets and obtained new topologies defined by these families of sets. In [12] Khalimsky, Kopperman and Meyer proved that the digital line is a typical example of a $T_{1/2}$ space. Our aim is to introduce the notion of b-A-sets and b-V-sets to topological spaces and study some of its properties. Also, we prove that the topology generated by the class of b-open sets contains the topology generate by the class of preopen (resp. semi-open) sets by using the notions of Λ -sets and \vee sets. Finally we introduce generalized b- Λ -sets, generalized b- \vee -sets, b- Λ -functions, b- \lor -functions and investigate some properties of the new concepts.

Definition 1.1. A subset A of a topological space is called:

- (1) Semi-open [14] if $A \subseteq cl(int(A))$.
- (2) Preopen [16] if $A \subseteq int(cl(A))$.

Received April 26, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 54A10.

Key words and phrases: *b*-open sets, *b*- Λ -sets, *b*- \vee -sets, generalized *b*- Λ -sets, generalized *b*- \vee -sets, Λ_b -functions and \vee_b -functions.

- (3) α -open [4] if $A \subseteq int(cl(int(A)))$.
- (4) β -open [1] [Semi-preopen [5]] if $A \subseteq cl(int(cl(int(A))))$.
- (5) b-open [3] if $A \subseteq int(cl(A)) \cup cl(int(A))$.
- (6) Nowhere dense [2] if $int(cl(A)) = \phi$.

The class of all semi-open (resp. preopen, α -set, β -open and b-open) denoted by $SO(X,\tau)$ (resp. $PO(X,\tau)$, $\alpha O(X,\tau)$, $\beta O(X,\tau)$] and $BO(X,\tau)$.

The complement of these sets called semi-closed (resp. preclosed, α -closed, β -closed and b-closed) and the classes of all these sets will be denoted by $SC(X, \tau)$ (resp. $PC(X, \tau), \alpha C(X, \tau), \beta C(X, \tau)$ and $BC(X, \tau)$).

Definition 1.2. A topological space (X, τ) is said to be:

- (1) Extremely Disconnected (abb. E. D) [2] if the closure of any open set is open.
- (2) Submaximal [11] if all dense subset are open.
- (3) Resolvable [11] if there is a subset D of X such that D and (X D) are both dense in X.

Definition 1.3. A subset A of a space (X, τ) is called:

- (1) Λ -set (resp. - \vee -set) [15] if it is the intersection(resp, union) of open (resp. closed) sets.
- (2) Λ_s -sets (resp. $-\vee_s$ -sets) [7] if it is the intersection (resp. union) of semi-open (resp. semi-closed) sets.
- (3) pre-Λ-sets (resp. pre-∨-set) [10] if it is the intersection (resp. union) of preopen (resp. preclosed) sets.
- (4) Generalized Λ -set (resp. generalized \lor -set) [15] if $\Lambda(A) \subseteq F$ whenever $A \subseteq F$ and $F \in C(X, \tau)$ (resp. $U \subseteq \lor(A)$ whenever $U \subseteq A$ and $U \in O(X, \tau)$.
- (5) Generalized semi- Λ -set (resp. generalized semi- \vee -set) [7] if $\Lambda_s(A) \subseteq F$ whenever $A \subseteq F$ and $F \in SC(X, \tau)$ (resp. $U \subseteq \vee_s(A)$ whenever $U \subseteq A$ and $U \in SO(X, \tau)$.
- (6) Generalized pre- Λ -set (resp. generalized pre- \vee -set) [10] if $\Lambda_p(A) \subseteq F$ whenever $A \subseteq F$ and $F \in PC(X, \tau)$ (resp. $U \subseteq \vee_p(A)$ whenever $U \subseteq A$ and $U \in PO(X, \tau)$.

Lemma 1.1 ([9]). For a space (X, τ) . If $U \subseteq Y \subseteq X$, $U \in BO(X, \tau)$ and $Y \in BO(X, \tau)$, then:

- (1) $U \in \beta O(X, \tau)$
- (2) $U \in BO(X,\tau)$ if $U \in \beta O(X,\tau) BO(X,\tau)$.

2. Topological spaces via Λ_b -(\vee_b -)sets

In this section we introduced the concept of b- Λ - (resp. b- \vee -) sets via the concept of b-open sets. We define the class of $\tau^{\Lambda_b}(\tau^{\vee_b})$ and prove that they form topologies.

Definition 2.1. We define $\Lambda_b(A)$ and $\vee_b(A)$ for a subset A of a space (X, τ) as

$$\Lambda_b(A) = \bigcap \{G : A \subseteq G, \ G \in BO(X, \tau)\} \text{ and}$$

$$\vee_b(A) = \bigcup \{F : F \subset A, \ F \in BC(X, \tau)\}.$$

Example 2.1. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a, b\}, \{b, c, d\}\}$. Then $BO(X, \tau) = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c, \}, \{a, b, d\}, \{b, c, d\}\}$ and $\Lambda_b(\{a\}) = \{a, b\}, \Lambda_b(\{c, d\}) = \{b, c. d\}, \Lambda_b(\{b\}) = \{b\}, \vee_b(\{a, b\}) = \{a, b\}, \vee_b(\{b, c, d\}) = \{c, d\}, \vee_b(\{a\}) = \{a\}.$

Lemma 2.1. For subsets A, B and A_i , $i \in I$, of a space (X, τ) the following properties hold:

- (1) $A \subseteq \Lambda_b(A)$,
- (2) If $A \subseteq B$, then $\Lambda_b(A) \subseteq \Lambda_b(B)$,
- (3) $\Lambda_b(\Lambda_b(A)) = \Lambda_b(A),$
- (4) If $A \in BO(X, \tau)$, then $A = \Lambda_b(A)$,
- (5) $\Lambda_b(\bigcup\{A_i:i\in I\})=\bigcup\{\Lambda_b(A_i):i\in I\},\$
- (6) $\Lambda_b(\bigcap\{A_i:i\in I\})\subseteq \bigcap\{\Lambda_b(A_i):i\in I\},\$
- (7) $\Lambda_b(X \setminus A) = X/V_b(A).$

Proof. (1), (2), (4), (6) and (7) are immediate consequences of Definition 2.1. To prove (3), firstly from the Definition 2.1, $\Lambda_b(A) \subseteq \Lambda_b(\Lambda_b(A))$. For the converse inclusion, let $x \notin \Lambda_b(A)$. Then there exists $G \in BO(X, \tau)$ such that $A \subseteq G$ and $x \notin G$. Since $\Lambda_b(\Lambda_b(A)) = \{G : \Lambda_b(A) \subseteq G, G \in BO(X, \tau)\}$, so we have $x \notin \Lambda_b(\Lambda_b(A))$. Thus $\Lambda_b(\Lambda_b(A)) = \Lambda_b(A)$.

To prove (5), let $A = \bigcup \{A_i : i \in I\}$. By (2) Since $A_i \subseteq A$, then $\Lambda_b(A_i) \subseteq \Lambda_b(A)$ and so $\bigcup \{\Lambda_b(A_i) : i \in I\} \subseteq \Lambda_b(A)$. To prove the converse inclusion, let $x \notin \bigcup \{\Lambda_b(A_i) : i \in I\}$, then for each $i \in I$ there exists $G_i \in BO(X, \tau)$ such that $A_i \subseteq G_i$ and $x \notin G_i$. If $G = \bigcup \{G_i : i \in I\}$ then $G \in BO(X, \tau)$ with $A \subseteq G$ and $x \notin G$. Hence $x \notin \Lambda_b(A)$ and so (5) holds. \Box

Lemma 2.2. For subsets A, B and A_i , $i \in I$ of a space $BO(X, \tau)$ the following properties hold:

(1) $\vee_b(A) \subseteq A$,

- (2) If $A \subseteq B$ then $\vee_b(A) \subseteq \vee_b(B)$,
- (3) $\vee_b(\vee_{B_P}(A)) = \vee_b(A),$
- (4) If $A \in BC(X, \tau)$ then $A = \vee_b(A)$,
- (5) $\vee_b(\bigcap\{A_i:i\in I\}) = \bigcap\{\vee_b(A_i):i\in I\},\$
- (6) $\bigcup\{\forall_b(A_i): i \in I\} \subseteq \forall_b(\bigcup\{A_i: i \in I\}).$

Proof. Obvious by Lemma 2.1 (7).

Remark 2.1. We note, in general for any subsets A, B of $(X, \tau) \Lambda_b(A \cap B) \neq \Lambda_b(A) \cap \Lambda_b(B)$ and $\forall_b(A \cup B) \neq \forall_b(A) \cup \forall_b(B)$, as in the following example.

Example 2.2. In Example 2.1, if $A = \{a\}$, $B = \{b, c, d\}$ then, $\Lambda_b(\{a\} \cap \{b, c, d\}) = \Lambda_b(\phi) = \phi$, $\Lambda_b(\{a\}\} \cap \Lambda_b(\{b, c, d\}) = \{b\}$. Also, $\vee_b(\{a\} \cup \{b, c, d\}) = \vee_b(X) = X$, $\vee_b\{a\} \cup \vee_b\{b, c, d\} = \{a\} \cup \{c, d\} = \{a, c, d\}$.

Definition 2.2. A subset A of a space (X, τ) is called b-A- (resp. b-V-) set if $A = \Lambda_b(A)$ (resp. $A = \vee_b(A)$). The class of all b-A-sets (resp. b-V-sets) will be denoted by τ^{Λ_b} (resp. τ^{\vee_b}).

Example 2.3. Let (X, τ) be the same as in Example 2.1, the class of all *b*-A-sets is $\{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$ and *b*- \vee -sets is $\{X, \phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c\}, \{a, d\}, \{c, d\}\}$.

Proposition 2.1. In a space (X, τ) , the class of all b- Λ - (resp. b- \vee -) sets is a topological space.

Proof. It is obvious from Definition 2.1 that X, ϕ and the intersection of b- Λ -sets is b- Λ -sets. To prove the union of b- Λ -sets is b- Λ -sets, let $\{A_i : i \in I\}$ be a family of b- Λ -sets in (X, τ) and $A = \bigcup \{A_i : i \in I\}$. Then by Lemma 2.1 we have $A = \bigcup \{\Lambda_b(A_i) : i \in I\} = \Lambda_b(A)$ which complete the proof. \Box

Remark 2.2. Since τ^{Λ_b} (resp. τ^{\vee_b}) is closed under arbitrary intersection, then such class is Alexandröff space. Then τ^{Λ_b} (resp. τ^{\vee_b}) contains all *b*-open sets (resp *b*-closed sets). Also, τ^{Λ_b} (resp. τ^{\vee_b}) containing τ^{Λ_s} ([7]) and τ^{Λ_p} ([10]) (resp. τ^{\vee_s} ([7]) and τ^{\vee_p} ([10])), but Andrijević ([3]) proved that the topology generated by *b*-open sets equal the topology generated by preopen sets.

Now, we investigate some properties in the class of τ^{Λ_b} (resp. τ^{\vee_b}).

Proposition 2.2. In a space (X, τ^{Λ_b}) the following statements are verified:

- (1) If every $A \subset X$ is nowhere dense then $\tau^{\Lambda_b} = \tau^{\Lambda_s}$.
- (2) If (X, τ) is an indiscrete space, then each b- Λ -set is pre- Λ -set but not semi- Λ -set.

Proof. (1) Since every A is nowhere dense, then $SO(X, \tau) = BO(X, \tau)$. So $\tau^{\Lambda_b} = \tau^{\Lambda_s}$.

(2) Obvious, since each *b*-open set in indiscrete space is preopen but not semi-open. $\hfill \Box$

Theorem 2.1. If τ^{Λ_b} is quasi-discrete and for any $A \in \tau^{\Lambda_b}$ then $A \in \tau^{\Lambda_s}$ and $\tau^{\Lambda_b} = \tau^{\Lambda_s}$.

Proof. Since $A \in \tau^{\Lambda_b}$ and $X - A \in \tau$, then A is Λ_b -open set and closed. Therefore $A \subseteq \bigcap \{B : B \subseteq A \text{ and } B \text{ is } b\text{-open} \} \subseteq \bigcap \{cl(int(B)) \cup int(cl(B))\} = \bigcap \{cl(int(B)) \cup int(B)\} = \bigcap \{cl(int(B)) : B \subseteq A\}$. So $A \in \tau^{\Lambda_b}$.

Theorem 2.2. In a space (X, τ) , any b- Λ -set A is pre- Λ -set if one of the following condition hold:

- (1) (X, τ) is E.D.
- (2) (X A) is dense in X.

Proof. (1) Since A is b-Λ-set, then A is b-open set or the intersection of b-open sets. If A is b-open set and (X, τ) is E.D then A ⊆ cl(int(A)) ∪ int(cl(A) ⊆ int(cl(int(A))) ∪ int(cl(A)) = int(cl(A)). Therefore A is preopen set. So A is pre-Λ-set. When A the intersection of b-open sets and every b-open set in E.D space is preopen. Then A is the intersection of preopen set. So A is pre-Λ-set.

(2) Since A is b-A-set and (X - A) dense in X, then $int(A) = \phi$ and $A \subseteq cl(int(A)) \cup int(cl(A)) = int(ci(A))$. Hence A is preopen and pre-A-set. \Box

Theorem 2.3. In a space (X, τ) , the following statements are verified:

- (1) Every β -open and closed is b- Λ -set.
- (2) If (X, τ) is Submaximal and E.D, then every α -open set is b- Λ -set.
- (3) If $U \in \tau^{\alpha}$ and A is b-open then $A \cap U$ is b-A-set in τ_U .
- (4) For $U \subset Y \subset X$ and U is b-open set in τ_Y and Y is b-open set then U is $b \cdot \Lambda$ -set if $U \notin [\beta O(X, \tau) BO(X, \tau)].$

Proof. (1) Since if every $A \subset X$ is β -open and closed then it is *b*-open. Therefore A is *b*- Λ -set.

- (2) If (X, τ) is Submaximal and E.D, then $\tau^{\alpha} = b(X, \tau)$. So α -open set is b-A-set.
- (3) Since $U \cap A \subset int(cl(int(U))) \cap (int(cl(A)) \cup cl(int(A)))$
 - $= (int (cl (int (U))) \cap int (cl (A))) \cup (int (cl (int (U))) \cap cl (int (A))))$
 - \subset int $(int (cl (int (U))) \cap int (cl (A))) \cup cl (int (cl (int (U))) \cap int (A)))$
 - \subset int $(cl(int(U)) \cap int(cl(A))) \cup cl(cl(int(U)) \cap int(A))$
 - $\subset int(cl(int(U)) \cap int(cl(A))) \cup cl(cl(int(U) \cap int(A)))$
 - $\subset (U \cap int(cl(int(U)) \cap int(cl(A)))) \cup (U \cap cl(int(U) \cap int(A)))$
 - \subset $int_U(cl(int(U)) \cap int(cl(A))) \cup cl_U(int(U) \cap int(A))$
 - \subset int_U (cl (int (U) \cap int (cl (A))))) \cup cl_U (int (U) \cap int (A))
 - \subset int_U (cl (int (U) \cap cl (A)))) \cup cl_U (int (U) \cap int (A))

$$\subset int_{U}\left(cl\left(cl\left(int\left(U\right)\cap A\right)\right)\right)) \cup cl_{U}\left(int\left(U\right)\cap int\left(A\right)\right).$$

Then

$$U \cap A \subset int_U U \cap (cl (int (U) \cap A)) \cup cl_U (int_U (int (U) \cap int (A)))$$

- \subset int_U (cl_U (int (U) \cap A))) \cup cl_U (int_U (U \cap A))
- $\subset int_U \left(cl_U \left(U \cap A \right) \right) \cup cl_U \left(int_U \left(U \cap A \right) \right).$

Therefore $U \cap A$ is b-open set in τ_U and it is b- Λ -set in τ_U .

(4) Obvious from Lemma 1.2.

Remark 2.3. The condition $U \notin [\beta O(X, \tau) - BO(X, \tau)]$ in Theorem 2.3.(4) is necessary as shown by the following example.

Example 2.4. Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{b\}, \{a, c\}, \{a, b, c\}\}$ and $Y = \{b, c, d\}$. The subset $A = \{c, d\} \in \tau^{\Lambda_b}$ while $A \notin BO(X, \tau)$.

Definition 2.3. A space (X, τ) is said to be:

- (1) $B T_{1/2}$ space if each singleton is either *b*-open or *b*-closed set.
- (2) $B T_1$ space if for each pair of distinct point x and y of X there exist two b-open sets U, V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. Clearly a space (X, τ) is $B T_1$ if each singleton is b-closed.

Lemma 2.3. The space of b-open set is $b - T_{1/2}$ space.

Proof. Since each singleton of each space is either preopen or preclosed ([10]) and each preopen set is *b*-open set. Then each singleton is either *b*-open or *b*-closed. This complete the proof. \Box

Theorem 2.4. For a space (X, τ) the following are equivalent:

- (1) (X, τ) is $B T_1$.
- (2) Every subset of X is b- Λ -set.
- (3) Every subset of X is b- \lor -set.
- (4) Every preopen and semi-open subsets of X is $b \rightarrow -set$

Proof. Clearly $(2) \Leftrightarrow (3)$.

 $(1) \Rightarrow (3)$ Let $A \subset X$. Since $A = \bigcup \{ \{x\} : x \in A \}$, then A is a union of b-closed sets. Hence it is $b \lor \neg$ -set.

 $(3) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (1)$ Since each singleton is either preopen or preclosed. Let $x \in X$. If $\{x\}$ is preopen then, it is *b*- \lor -set and so is *b*-closed. If $\{x\}$ is preclosed then it is *b*-closed. For semi-openness, it is obvious from [7] Theorem 2.6(4).

Proposition 2.3. Let (X, τ) be a topological space. Then

- (1) (X, τ^{Λ_b}) and (X, τ^{\vee_b}) are always $T_{1/2}$.
- (2) If (X, τ) is $B T_1$, then (X, τ^{Λ_b}) and (X, τ^{\vee_b}) are discrete space.

Proof. Obvious from Theorem 2.4 and Lemma 2.3.

545

Corollary 2.1. If (X, τ) is resolvable, then (X, τ^{Λ_b}) and (X, τ^{\vee_b}) are discrete.

Proof. Since (X, τ) is resolvable, then (X, τ^{Λ_p}) and $(X, \tau^{\vee p})$ are discrete ([10]). Also, since $(X, \tau^{\Lambda p})$ and $(X, \tau^{\vee p})$ are subset of (X, τ^{Λ_b}) and (X, τ^{\vee_b}) respectively, then (X, τ^{Λ_b}) and (X, τ^{\vee_b}) are discrete.

3. Generalized b- Λ - (b- \vee -) sets

In this article, we introduced a new concepts of generalized $b-\Lambda$ - (resp. $b-\vee$ -) sets and study its connection with $b-\Lambda$ - (resp. $b-\vee$ -) sets.

Definition 3.1. A subset A of a space (X, τ) is called:

- (1) A generalized b-A-sets (abb. g- Λ_b -sets) if $\Lambda_b(A) \subseteq P$ whenever $A \subseteq P$ and $P \in BC(X, \tau).$
- (2) A generalized b- \lor -sets (abb. g- \lor_b -sets) if $V \subseteq \lor_b(A)$ whenever $V \subseteq A$ and $V \in BO(X, \tau).$

Proposition 3.1. Let A be a subset of a space (X, τ) :

- (1) A is generalized Λ_b -set if and only if A is Λ_b -set.
- (2) A is generalized \vee_b -set if and only if A is \vee_b -set.

Proof. (1) Clearly, every Λ_b -set is generalized Λ_b -set. To prove the conversely, let A be a generalized Λ_b -set and there exists $x \in \{\Lambda_b(A) - A\}$. Observe that $\{x\}$ is b-open or b-closed and that $A \subseteq \{X - \{x\}\}$. If $\{x\}$ is b-open, then $\{X - \{x\}\}$ is b-closed. So $\Lambda_b(A) \subseteq \{X - \{x\}\}$, which gives a contradiction. If $\{x\}$ is b-closed, then $\{X - \{x\}\}\$ is b-open and so $\Lambda_b(A) \subseteq \{X - \{x\}\}\$, which also gives contradiction. Hence A is Λ_b -set.

(2) In the same manner of 1.

Definition 3.2. Let Y be a subset of topological space (X, τ) . A subset A of Y is a $g \cdot \Lambda_b$ -set (resp. $g \cdot \vee_b$ -set) relative to Y if A is a $g \cdot \Lambda_b$ -set (resp. $g \cdot \vee_b$ -set) of the subset space (Y, τ_Y) of (X, τ) . For a subset A of Y. We define a subset $\Lambda_b(A_Y)$ by $\Lambda_b(A_Y) = \cap \{U \cap Y : U \in BO(X, \tau), A \subseteq U \cap Y \}$. Then $\Lambda_b(A_Y) = \Lambda_b(A) \cap Y$.

Proposition 3.2. Let Y be a b-A-set of a topological space (X, τ) and $A \subseteq Y$. Then A is $g-\Lambda_b$ -set in (X, τ) if and only if A is $g-\Lambda_b$ -set relative to Y.

Proof. Obvious from Definition 3.2 and Proposition 3.1.

4. Λ_b -functions and \vee_b -functions

Definition 4.1. A function $f: (X, \tau) \to (Y, \sigma)$ is called:

- (1) Λ_b -function if $f(U) \in BC(Y, \sigma)$ for all $U \in \tau^{\Lambda_b}$.
- (2) \vee_b -function if $f(G) \in BO(Y, \sigma)$ for all $G \in \tau^{\vee_b}$.

Remark 4.1. We note that Λ_b -functions and \vee_b -functions are independent as in the following example.

Example 4.1. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{X, \phi, \{a\}\}$ and $Y = \{u, v, w\}$ with the topology $\sigma = \{Y, \phi, \{u\}, \{w\}, \{u, w\}\}$. Then the class of *b*-open set are $BO(X, \tau) = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ and $BO(Y, \sigma) = \{Y, \phi, \{u\}, \{w\}, \{u, v\}, \{u, w\}, \{u, w\}\}$. Define f_1, f_2, f_3 from (X, τ) into (Y, σ) as follows $f_1\{a\} = f_1\{c\} = \{v\}, f_1\{b\} = f_1\{d\} = \{u\}, f_2\{a\} = f_2\{b\} = \{u\}, f_2\{c\} = f_2\{d\} = \{w\}, f_3\{a\} = \{v\}, f_3\{b\} = \{u\}, f_3\{c\} = f_3\{d\} = \{w\}$. Then f_1 is Λ_b -function but not \lor_b -function. Also, f_2 is \lor_b -function but not Λ_b -function.

Now, we state some results on such types of functions.

Theorem 4.1. For a map $f: (X, \tau) \longrightarrow (Y, \sigma)$. The following are equivalent:

- (1) f is Λ_b -map.
- (2) For all $B \subseteq Y$, $F \in \tau^{\vee_b}$ with $f^{-1}(B) \subseteq F$, there exists $O \in BO(Y, \sigma)$ with $B \subseteq O$ and $f^{-1}(O) \subseteq F$.

Proof. (1) \Longrightarrow (2) Let $B \subseteq Y$, $F \in \tau^{\vee_b}$ with $f^{-1}(B) \subseteq F$ and put $O = [f(F^c)]^c$, since f is Λ_b -map, $f(F^c) \in BC(Y, \sigma)$. Hence $O \in BO(Y, \sigma)$. Since $f^{-1}(B) \subseteq F$, we have $f(F^c) \subseteq B^c$. Then $B \subseteq [f(F^c)]^c = O$. Moreover $f^{-1}(O) = f^{-1}[f(F^c)]^c \subseteq [F^c]^c = F$.

(2) \Longrightarrow (1) Let $A \in \tau^{\Lambda_b}$, $y \in (f(A))^c$ and let $F = A^c$. Since $F \in \tau^{\vee_b}$ and by (2) when $B = \{y\}$, there exists $O_y \in BO(Y, \sigma)$ with $y \in O_y$ and $f^{-1}(O_y) \subseteq F$. So $y \in O_y$, $f^{-1}(O_y) \subseteq F$ and $y \in O_y \subseteq (f(A))^c$. Hence $(f(A))^c = \bigcup \{O_y : y \in (f(A))^c\} \in BO(y, \sigma)$. Thus $f(A) \in BC(y, \sigma)$. Therefore f is Λ_b -function. \Box

Theorem 4.2. For a map $f: (X, \tau) \to (Y, \sigma)$ the following are equivalent.

- (1) f is \vee_b -function.
- (2) For all $B \subset Y$, $O \in \tau^{\wedge_b}$ with $f^{-1}(B) \subseteq O$, there exists $F \in BC(Y, \sigma)$ with $B \subseteq F$ and $f^{-1}(F) \subseteq O$.

Proof. Similar as Theorem 4.1 and using Lemma 2.1 in [7]. \Box

Theorem 4.3. Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \delta)$ be functions such that $g \circ f : (X, \tau) \to (Z, \delta)$ then:

(1) $g \circ f$ is Λ_b -function if f is Λ_b -function and g is \vee_b -function.

(2) $g \circ f$ is \vee_b -function if f is \vee_b -function and g is Λ_b -function.

Proof. (1) Let $G \in \tau^{\Lambda b}$. Since f is Λ_b -function, then we have $f(G) \in BC(Y, \sigma)$. Consequently $f(G) \in \sigma^{\vee_b}$. Since g is \vee_b -function, then $g(f(G)) \in BO(Z, \delta)$.

(2) Similarly to part 1.

References

- [1] M. E. Abd El-Monsef, S. N. El-Deab and R. A. Mahmoud, β -open sets and β continuous mappings, Bull. Fac. Assuit Univ., 12(1983), 77-90.
- [2] P. Alexandröff, Discrete Räume, Mat. Sb., 2(1937), 501-508.
- [3] D. Andrijević, On b-open sets, Mat. Vesnik., 48(1996), 59-64.
- [4] D. Andrijević, Some properties of the topology of α -sets, Mat. Vesnik., **16**(1984), 1-10.
- [5] D. Andrijević, Semi preopen sets, Mat. Vesnik., 38(1986).
- [6] D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik., 39(1987), 367-376.
- [7] M. Caldas and J. G. Dontchev, Λ -sets and $G\Lambda$ -sets, Mem. Fac. Sci. Kochi Univ. Math., 21(2000), 21-30.
- [8] W. A. Dunham, New closure operator for non- T_1 topologies, Kyungpook Math. J., **22**(1982), 55-60
- [9] A. A. El-Atik, A study of some types of mappings on topological spaces, M. Sc. Thesis, Tanta Univ., (1997).
- [10] M. Ganster, S. Jafar and T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hungar., **95(4)**(2003).
- [11] M. Ganster, Preopen sets and presolvable spaces, Kyungpook Math. J., 27(1987), 135-143.
- [12] E. Khalimsky, R. Kopperman and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl., 36(1)(1990), 1-17.
- [13] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(1970), 89-96.
- [14] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
- [15] H. Maki, Generalized A-sets and the associated closure operator, Special, Issul in commemoration of prof. Kazusada Ikeda's. Retirement, 1. Oct. (1986), 139-146.
- [16] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mapping, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
- [17] A. S. Mashhour, M. E. Abd.El-Monsef, I. A. Hasanain and T. Noiri, Strongly compact spaces, Delta. J. Sci., 8(1984), 30-46.