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ON A RIGIDITY OF HARMONIC DIFFEOMORPHISM
BETWEEN TWO RIEMANN SURFACES

TAESOON KIM

Abstract. One of the basic questions concerning harmonic map is
on the existence of harmonic maps satisfying a certain condition.
Rigidity of a certain harmonic map can be considered as an an-
swer for this kinds of questions. In this article, we study a rigidity
property of harmonic diffeomorphisms under the condition that the
inverse map is also harmonic. We show that every such a harmonic
diffeomorphism is totally geodesic or conformal in two dimensional

case.

1. Introduction

The study of harmonic map has long history. Harmonic map is by
definition a critical point of the energy functional. Since any harmonic
map from a Riemann surface to a Riemannian manifold is automati-
cally a minimal map, harmonic map were studied in connection with
the theory of minimal surfaces from the beginning. Also it has been
used to study the geometry of manifold such as Teichmiiller theory and
Kihler geometry. Bochner had singled out the theory of harmonic maps
as generalized minimal surfaces and Morrey[6] had solved the famous
Plateau problem in connection with harmonic map. Sacks-Uhlenbeck
and R. Schoen had developed harmonic map theory related to minimal
surface and Kéahler geometry.
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In the midsixties, Eells and Sampson[2] had shown the existence of
harmonic representative in each homotopy class when target manifold
had negative curvature. They used heat flow to deform a map to an
energy minimizing harmonic map in each homotopy class. This was a
major breakthrough and have had deep influence on geometry. There
arc many works related to the heat flow of Eells-Sampson such as the
characterization of those homotopy classes of maps between compact
manifolds on which the energy functional takes arbitrary small values
and a partial regularity theory for energy minimizing maps. The cur-
vature assumption for the target manifold is the critical obstruction in

higher dimensional case.

In two dimensional case, harmonic map has more nice properties.
The energy functional is invariant under the conformal change of met-
ric when the domain manifold is a surface. So harmonic map is closely
related to conformal map in this case. For the existence of harmonic rep-
resentative we don’t need the curvature assumption. Sacks-Uhlenbeck|7]
have shown that if the target manifold N is compact and m(N) = 0,
then any homotopy class of maps from a compact surface to N contains
an energy minimizing harmonic map amongst all maps in that class.
Moreover there are some interesting results concerning harmonic dif-
feomorphism. Jost and Schoen[5] have shown that any diffeomorphism
between two homeomorphic closed surfaces is homotopic to a harmonic
diffeomorphism of least energy among all diffeomorphism homotopic to
it.

There is another characterization of harmonic map given by Ishi-
hara[3] which asserts that a map is harmonic iff it carries germs of
convex functions to germs of subharmonic functions. As an immedi-
ate consequence of this assertion we know that arbitrary composition of
two harmonic maps need not to be a harmonic map. A map is a har-
monic morphism if it carries germs of harmonic functions to germs of

harmonic functions. It had shown that a map is a harmonic morphism
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iff it is harmonic and horizontally conformal. Joining this to the Ishi-
hara’s characterization we know that composition of harmonic map and
harmonic morphism is a harmonic map.

In this short article, we are interested in the harmonic diffeomor-
phism with some properties. Concerning to the composition property
we consider harmonic map whose inverse is also harmonic. We first guess
that it has some good properties such as composition invariant and a
certain rigidity property and find out that it does not have composition
invariant property but it has the following strong rigidity property; If
¢ : M,g — N,h be a harmonic diffeomorphism between two Riemann
surfaces whose inverse is also harmonic, ¢ is either a totally geodesic or
a conformal diffeomorphism.

For the higher dimensional case, we cannot find out any meaningful
results. Our method using in this article can be applied only to the
two dimensional case and need some more conditions for the higher

dimensional case.

2. Preliminaries

In this section, we recall some basic facts about the harmonic map and
related topics, and introduce some examples of harmonic maps whose
inverse is also harmonic.

For a map ¢ : M,g — N,h, the second fundamental form §(¢) is
by definition the symmetric two tensor defined by [(¢) = Vd¢ . A
map is called harmonic when the trace of the second fundamental form
7(¢) = traceyB(¢) of it is zero and totally geodesic when the second
fundamental form is identically zero. Immediate from definition, totally
geodesic map is harmonic but one can easily find harmonic maps which
are not totally geodesic. In two dimensional case the conformal property
is closely related to harmonic property. A map ¢ : M, g — N, h is called

conformal if ¢*h = ug for some nonnegative u € C(M).
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The basic properties of harmonic maps and related totally geodesic
maps are studied in many literatures, and we summarize some necessary
results as follows.(See [1] for details.) The stress energy tensor is by
definition the symmetric two tensor Sy = e(¢) — ¢*h, where e(¢) =
%|d¢>|2 is the energy density of ¢ . By direct computation, divS, =
— < 7,d¢ > and so it vanishes if ¢ is harmonic. Conversely, if ¢ is a
differentiable submersion almost everywhere and divSs = 0 then ¢ is
harmonic. When ¢ is nonconstant and dimM = m = 2, then S, = 0 iff
¢ is conformal. If m > 2 and ¢ is harmonic and conformal, then ¢ is
homothetic. When ¢ is totally geodesic, ¢*h is parallel and so e(¢) is
constant.

Now let us introduce a condition for harmonic diffeomorphism which

we will concern.

Definition 1. A harmonic diffeomorphism is B—harmonic if its in-

verse is also harmonic.

The isometry is the first example of B—harmonic diffeomorphism. In
fact, since the inverse of totally geodesic map is also totally geodesic,
every totally geodesic diffeomorphism is also B—harmonic. Moreover
we have many interesting examples of B-harmonic diffeomorphism.

(1) Since every Lie group homomorphism between two Lie group with
bi-invariant metric is harmonic, Lie group isomorphism is B—harmonic

(2) In Kahler case, every holomorphic map is harmonic and so bi-
holomorphic map is B—harmonic in Kéhler case.

(3) Especially in two dimensional case, the conformal map is har-
monic. Since the inverse of conformal map is also conformal, the con-
formal diffeomorphism between two Riemann surfaces is B—harmonic.

One can expect that B—harmonic map has more strong rigidity or
more good properties than the usual harmonic diffeomorphisms. We will
introduce a partial answer about this question in the next section, which

is complete in two dimensional case. It is remarkable that all of the above
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examples of B—harmonic maps form a group under composition when
they are maps from a manifold onto itself. But the set of all harmonic
diffeomorphisms does not form a group under composition in general.
For two maps ¢ : M — N and ¢ : N — N, the tension field of their
composition i o ¢ is

(Y0 @) = B(¥)(de(es), dg(ei)) + dip(7(4)),

where {e;} is an orthonormal frame field in M and 3 is the second
fundamental form. Hence, the for the two harmonic map ¢ and v the
composition 1o ¢ is harmonic iff B(¢)(dé(e;), déd(e;)) = 0. This assertion
cannot be satisfied for the general harmonic maps and so the set of all

harmonic diffeomorphisms does not form a group under composition.

3. Rigidity property

All manifolds are assumed to be a compact oriented Riemann surface
without boundary throughout this section. We now start with a lemma,
which tells the relation between the second fundamental form of ¢ and

that of its inverse ¢~1.

Lemma 1. Let ¢ : (M, g) — (N, h) be a diffecomorphism and X, Y
be vector fields on M. Then

dp~ (B(¢)(X,Y)) = —B(¢7)(d¢(X), db(Y)).
Proof. The second fundamental form of ¢~! is by definition
B 1)(d(X),dg(Y)) :=(Vdg™")(d¢(X), dg(Y))
= (Vagx)dd ™) (dp(Y))
=V T dp 1 dp(Y)) ~ db™H(Vasx) db(Y))-
The first term of the above equation can be reduced as follows;

—1\*
Vi T0de ™ de(Y)) = Vas-1asxyY = VxY = do™ (dd(VxY)).
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By substituting this to the first equation, we have

Ble™)(dp(X), dg (V) =V X T dg= dg(Y)) ~ dg™ (Vagx)dd(Y)
=d¢™H(dp(VxY)) = do™ (Vygx)dep(Y))
=—d¢p™ (Vag(x)de(Y) — dp(VxY))
=—d¢" 1 (B(0)(X,Y)).

O

The above lemma tells that the stress energy tensors of a map and its
inverse are closely related. So there are some possibilities for B—harmonic

map to have more strong rigidity.

Theorem 1. Let ¢ : M,g — N,h be a B—harmonic map between
two Riemann surfaces. Then ¢ is either totally geodesic or a conformal

diffeomorphism.

Proof. First we begin with the pointwise argument. Fix x € M and
choose an orthonorml frame field {e1, ez} on a neighborhood of z such
that {d¢(e1),d@(e2)} is an orthogonal frame field on a neighborhood
of ¢(z). One can find such a basis by diagonalizing ¢*h since ¢ is a
diffeomorphism. Let f; = jﬁ—(e’l— and d¢(e;) = Aifi, i.e.,, {f1, fo} is an
orthonormal frame field on a neighborhood of ¢(z). Put u; = )\% Since
the second fundamental form is C*° bi-linear, by using the above two

frames, the harmonic map equations of ¢ and ¢~ become
(1) 7(¢) = B(d)(e1, e1) + B(¢)(e2,e2) =0
(2)

(@7 = BleT)(f, )+ B (fo, fo)
= 13B(¢7")(dd(er), dp(e1)) + 13B($ ™) (d(e2), dp(e2))
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Using Lemma 1, (2) can be written as

dp™ (u3B(8)(e1, e1) + p3B(¢)(e2, €2)) = 0,

which is equivalent to

(3) uiB(8)(e1,e1) + pu38(¢)(e2, €2) = 0
since ¢ is a diffeomorphism.

From the above two equations (1) and (3) it is easy to show that
either pu? = p2 or B(¢)(e1,e1) = B(¢)(e2,e2) = 0 should hold. ¢ is
conformal in the first case and totally geodesic in the other case.

It is known that any harmonic map from a compact Riemann surface
of genus g which is not conformal is conformal at no more than 4g — 4
points(See p43 of [1]). Hence, by applying this to our case, we know
that any B—harmonic map between two Riemann surfaces which is not
conformal is totally geodesic with only 4g — 4 possible exceptions, which

are finite especially. Hence it is totally geodesic on the whole space. O

Since totally geodesic diffeomorphism is B—harmonic in general and
conformal diffeomorphism is B—harmonic in two dimensional case, the

above theorem can be written as following.

Theorem 2. Let (M,g), (N,h) be two compact oriented Riemann
surfaces. A map ¢ : M,g — N,h is B—harmonic iff it is either totally

geodesic or conformal.

Now we will finish our section with some remark on the composition
property of the B—harmonic diffeomorphism. Let ¢ : M — N and 9 :
N — N be two B—harmonic maps between compact oriented Riemann
surfaces. By the above theorem, they are totally geodesic or conformal.

When ¢ is totally geodesic, the composition formula

7( 0 ¢) = B()(de(ei), dd(e:)) + dy(r(¢))
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tells that the composition is also B—harmonic. When 1 is conformal,
there are two cases (1) ¢ is conformal or (2) ¢ is totally geodesic. In
the case of (1), the composition is B—harmonic since any composition
of two conformal maps again becomes a conformal map and conformal
map is automatically harmonic in two dimensional case. In the case of
(2), the composition map is not always harmonic in general. If it were
harmonic, then it should be either totally geodesic or conformal. When
the composition 10¢ is conformal, ¢ = 1~ (p0¢) is a composition of two
conformal maps and so is conformal. Joining this to the assumption that
¢ is totally geodesic, we get ¢ is both conformal and totally geodesic in
this case. When the composition 9 o¢ is totally geodesic, 1 = (o¢)¢p~!
Is a composition of two totally geodesic maps and so is totally geodesic.
Joining this to the assumption that ¢ is conformal we get 1 is both
conformal and totally geodesic in this case. But the following simple

proposition tells that it is not the general situation.

Proposition 1. Every diffeomorphism which is both conformal and

totally geodesic is homothetic.

Proof. Let ¢ : M,g — N, h be a conformal and totally geodesic map.
Since ¢ is conformal, ¢*h = pg for some nonnegative u € C(M). Let
{6;} and {e;} be an orthonormal basis such that d¢(e;) = u6;. On the
other hand, since ¢ is totally geodesic, we have

0 = Vdo(e;,ej)
Vd¢(ei)d¢(ej) - d¢(vez 6]')
16 (1)8; + 1*V 4,6,

Hence p is a constant function, i.e., ¢ is homothetic. 0
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