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Abstract. In this paper we introduce the notions of g-regularity and g-normality in fuzzy

topological spaces. We obtain some characterizations and several preservation theorems

of such spaces.

1. Introduction

Levine ([3]) introduced the concept of generalized closed sets in toplogical spaces
and a class of topological spaces called T 1

2
-spaces. In 1997, Balasubramanian and

Sundaram ([1]) introduced the concept of generalized closed sets in fuzzy topological
spaces. In this paper, we introduce the notions of fuzzy generalized regular spaces
and fuzzy generalized normal spaces. We obtain some characterizations and several
preservation theorems of such spaces.

2. Preliminaries

Throughout of the present paper, (X, τ) and (Y, ∆) (or simply X, Y ) always
mean fuzzy topological spaces on which no separation axioms are assumed unless
explicitly stated.

Let X be a set of points and I be the unit interval [0,1]. A fuzzy set µ in X is
a mapping from X into I. The class of all fuzzy sets on X is denoted by IX . For
x ∈ X and α ∈ (0, 1], a fuzzy set xα is called a fuzzy point in X iff

xα(y) =

{
α : y = x

0 : y 6= x.

The class of all fuzzy points of X is denoted by FP (X).
Let µ be a fuzzy subset of a fuzzy topological space (fts, for short) X, the

closure, the interior and the complement of µ are denoted by cl(µ), int(µ) and
1 − µ, respectively. For µ, λ ∈ IX , µ is called quasi–coincident with λ, denoted by
µqλ, if µ(x)+λ(x) > 1 for some x ∈ X, otherwise we write µq̄λ. A fuzzy subset µ is
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said to be regular open (resp. regular closed) if µ = int(cl(µ)) (resp. µ = cl(int(µ))).
The family of all regular open (resp. all regular closed) fuzzy subsets of a fts X is
denoted by RO(X) (resp. RC(X)).

Lemma 2.1 ([2]). Let (X, τ) be a fts, xt ∈ FP (X) and µ ∈ IX . Then:

(i) xtq cl(µ) iff Uqµ for each open fuzzy set U containing xt.

(ii) If µq̄U , then cl(µ)q̄U for each U ∈ τ .

Definition 2.2 ([1]). A fuzzy subset µ of a fts (X, τ) is said to be

(i) generalized closed (briefly, g-closed) if cl(µ) ≤ λ whenever µ ≤ λ and λ is
open fuzzy set.

(ii) generalized open (briefly, g-open) if 1− µ is g-closed.

Definition 2.3 ([1]). A fts (X, τ) is said to be FT 1
2
-space iff every g-closed fuzzy

set in X is closed fuzzy set.

Definition 2.4 ([2]). A fts (X, τ) is said to be

(i) FT1-space iff xt is closed fuzzy set for every fuzzy point xt ∈ FP (X).

(ii) FT2-space iff xtq̄yr implies there exist open fuzzy sets U and V such that
xt ∈ U , yr ∈ V and Uq̄V .

(iii) FT2 1
2
-space iff xtq̄yr implies there exist open fuzzy sets U and V such that

xt ∈ U , yr ∈ V and cl(U)q̄cl(V ).

(iv) FR2–space (or F–regular) iff xtq̄F , F is closed fuzzy set implies that there
exist open fuzzy sets U and V such that xt ∈ U , F ≤ V and Uq̄V .

(v) FR3-space (or F -normal) iff for each closed fuzzy sets F1, F2 with F1q̄F2,
there exist open fuzzy sets U and V such that F1 ≤ U , F2 ≤ V and Uq̄V .

(vi) FT3-space iff it is FR2 and FT1.

(vii) FT4-space iff it is FR2 and FT1.

Definition 2.5 ([1]). A map f : (X, τ) → (Y, ∆) is called:

(i) Fg-continuous if the inverse image of every closed fuzzy set in Y is g-closed
fuzzy set in X.

(ii) Fgc-irresolute if the inverse image of every g-closed fuzzy set in Y is g-closed
fuzzy set in X.

Evidently, the Fgc-irresolute map is Fg-continuous.
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3. Fg-regular spaces

Definition 3.1. A fts (X, τ) is said to be Fg-regular (or FGR2) if for every g-
closed fuzzy set F and a fuzzy point xt such that xtq̄F , there exist open fuzzy sets
U and V such that F ≤ U , xt ∈ V and Uq̄V .

Evidently, every FGR2-space is FR2. The following example shows that the
converse is not true in general.

Example 3.2. Let X = {x, y} and τ = {1X , 0X , x0.2 ∨ y0.5, x0.8 ∨ y0.5}. Then
(X, τ) is a fts. It is easy to verify that (X, τ) is FR2 but not FGR2.

Theorem 3.3. A fts (X, τ) is FGR2 iff it is FR2 and FT 1
2
.

Proof. Obvious. ¤

Theorem 3.4. Let (X, τ) be a fts. Then the following statements are equivalent:

(i) (X, τ) is FGR2-space.

(ii) For each fuzzy point xt in X and each g-open fuzzy set U containing xt there
exists an open fuzzy set V containing xt such that cl(V ) ≤ U .

Proof. Easy. ¤

Theorem 3.5. A fts (X, τ) is FGR2 iff for each g-closed fuzzy set F in X and
each fuzzy point xt with xtq̄F , there exist open fuzzy sets U and V such that xt ∈ U ,
F ≤ V and cl(U)q̄cl(V ).

Proof. “Necessity.” Let F be a g-closed fuzzy set in X and xtq̄F . There exist open
fuzzy sets W and V in X such that xt ∈ W,F ≤ V and Wq̄V ; hence Wq̄cl(V ).
Again, since X is FGR2, there exist open fuzzy sets G and H of X such that xt ∈ G,
cl(V ) ≤ H and Gq̄H; hence cl(G)q̄H. Now, put U = W ∩ G, then U and V are
open fuzzy sets of X such that xt ∈ U,F ≤ V and cl(U)q̄cl(V ).

“Sufficiency.” This is obvious. ¤

Definition 3.6. A fts (X, τ) is said to be F -symmetric iff xtq̄cl(yr) implies that
yr q̄cl(xt) for any fuzzy points xt, yr ∈ FP (X).

Theorem 3.7. A fts (X, τ) is F -symmetric iff cl(xt)q̄F whenever xtq̄F for any
closed fuzzy set F in X.

Proof. “Necessity.” Suppose that F is a closed fuzzy set in X with xtq̄F . Then
cl(yr) ≤ F for all yr ∈ F and hence xtq̄cl(yr). Since X is F -symmetric, then
yr q̄cl(xt) for all yr ∈ F and hence for all yr ∈ F there exists an open fuzzy set
Uyr in X containing yr such that xtq̄Uyr . Let V =

⋃
yr∈F

{Uyr : xtq̄Uyr}. Then V is

an open fuzzy set in X containing F and xtq̄V . Therefore, xt ∈ 1 − V and hence
cl(xt) ≤ 1− V . It follows that cl(xt)q̄V and hence cl(xt)q̄F .

“Sufficiency.” This is obvious. ¤
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Corollary 3.8. A fts (X, τ) is F -symmetric iff xt is g-closed for each fuzzy point
xt in X.

Evidently, every FT1-space is F -symmetric space. The following example shows
that the converse is not true in general.

Example 3.9. Let X = {x} and τ = {1X , 0X , x0.5}. Then (X, τ) is F -symmetric
space but not FT1-space. Moreover, the fts (X, τ) is not FT 1

2
.

Definition 3.10. An FGR2 which is F -symmetric space, is called FG3-space

Theorem 3.11. If a fts (X, τ) is FG2-space, then it is FT2 1
2
.

Proof. Let xt and yr be any fuzzy points in X such that xtq̄yr. Since X is F -
symmetric, then xt is g-closed fuzzy set and by Theorem 3.5 there exist open fuzzy
sets U and V such that xt ∈ U, yr ∈ V and cl(U)q̄cl(V ). ¤

Corollary 3.12. If a fts (X, τ) is FG3-space, then it is FT2.

The following example shows that the converse of Corollary 3.12 is not true in
general.

Example 3.13. Let X be an infinite set. For x, y ∈ X, x 6= y, let Ux,y be a fuzzy
set in X defined by :

Ux,y(z) =





1 : z = x

0 : z = y
1
2 : z 6= x, z 6= y

for each z ∈ X. Now, consider the fuzzy topology τ on X generated by the family
{Ux,y : x, y ∈ X, x 6= y}. Then a fts (X, τ) is FT2 but not FGR2 and hence not
FG3.

Theorem 3.14. A fts (X, τ) is FG3 iff it is FT3.

Proof. Let X be an FG3-space. Therefore it is FGR2-space and F -symmetric.
Now, every FGR2-space is FR2 and every FG3-space is FT2. Hence X is FR2 and
FT2. Hence X is FT3. Conversely, let X be an FT3-space. Therefore it is FR2

and FT1. Then it is FT 1
2

and F -symmetric. Therefore X is FR2 and FT 1
2

which
implies that X is FGR2. As it is F -symmetric too, it is FG3. ¤

4. Fg-normal spaces

Definition 4.1. A fts (X, τ) is said to be Fg-normal (or FGR3) if for every g-
closed fuzzy sets F1 and F2 such that F1q̄F2, there exist open fuzzy sets U and V
such that F1 ≤ U , F2 ≤ V and Uq̄V .

Evidently, every FGR3-space is FR3. Also, a fts is FGR3 iff it is FR3 and
FT 1

2
.

Theorem 4.2. Let (X, τ) be a fts. Then the following statements are equivalent:
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(i) (X, τ) is FGR3-space.

(ii) For each g-closed fuzzy set F and each g-open fuzzy set U containing F , there
exists an open fuzzy set V such that F ≤ V ≤ cl(V ) ≤ U .

Proof. Easy. ¤

Theorem 4.3. A fts (X, τ) is FGR3 iff for every g-closed fuzzy sets F1 and F2

such that F1q̄F2, there exist open fuzzy sets U and V such that F1 ≤ U , F2 ≤ V
and cl(U)q̄cl(V ).

Proof. “Necessity.” Let F1 and F2 be any g-closed fuzzy sets in X with F1q̄F2.
There exist open fuzzy sets W and V in X such that F1 ≤ W , F2 ≤ V and Wq̄V ;
hence Wq̄cl(V ). Since X is FGR3, there exist open fuzzy sets G and H in X such
that F1 ≤ G, cl(V ) ≤ H and Gq̄H; hence cl(G)q̄H. Now, put U = W ∩G, then U
and V are open fuzzy sets in X such that F1 ≤ U , F2 ≤ V and cl(U)q̄cl(V ).
“Sufficiency.” This is obvious. ¤

Definition 4.4. An FGR3 and F -symmetric fts is called an FG4-space.

Theorem 4.5. Every FG4-space is also FG3-space.

Proof. Let (X, τ) be an FGR3 and F -symmetric space. Let F be g-closed fuzzy set
in X and xtq̄F . Then xt is g-closed fuzzy set, since X is F -symmetric. Then there
exist two open fuzzy sets U and V such that F ≤ U , xt ∈ V and Uq̄V , since X is
FGR3. Then X is FGR2 and hence X is FG3. ¤

Theorem 4.6. A fts (X, τ) is FG4 iff it is FT4.

Proof. Easy. ¤

5. Some applications

We shall investigate some preservation theorems of FGR2 and FGR3-spaces.
For this purpose, we introduce some definitions of mappings used in the sequel.

Definition 5.1. A map f : X → Y is said to be

(a) Fg-closed if f(F ) is g-closed in Y for every closed fuzzy set F in X.

(b) F -almost open if f(U) is open in Y for every U ∈ RO(X).

(c) F -almost closed if f(F ) is closed in Y for every F ∈ RC(X).

Evidently every F -open (F -closed) map is F -almost open (F -almost closed) map.

Lemma 5.2. If f : X → Y is an F -open, Fg-continuous bijection map, then f is
Fgc-irresolute.

Proof. Let F be any g-closed fuzzy set in Y and f−1(F ) ≤ U , where U is an open
fuzzy set in X. Then F ≤ f(U). Since f is F -open, then f(U) is open fuzzy set in
Y . Since F is g-closed fuzzy set in Y , then cl(F ) ≤ f(U). Hence f−1(cl(F )) ≤ U



18 M. E. El-Shafei

(f is injective). Since f is Fg-continuous, then f−1(cl(F )) is g-closed fuzzy set in
X and hence cl(f−1(F )) ≤ cl(f−1(cl(F ))) ≤ U . Thus f−1(F ) is g-closed fuzzy set
in X. ¤

Theorem 5.3. If f : X → Y is an F -open, Fg-continuous bijection map and X is
FGR2, then Y is FGR2.

Proof. Let F be any g-closed fuzzy set in Y and yr q̄F . Since f is F -open, Fg-
continuous bijective, then by Lemma 5.2, f is Fgc-irresolute and hence f−1(F ) is
g-closed. Put f(xr) = yr, then xr q̄f

−1(F ). Since X is FGR2, then there exist
F -open fuzzy sets U and V such that xr ∈ U , f−1(F ) ≤ V and Uq̄V . Since f is
F -open and bijective, we obtain yr ∈ f(U), F ≤ f(V ) and f(U)q̄f(V ). This shows
that Y is FGR2. ¤

Theorem 5.4. If f : X → Y is an F -continuous, Fg-closed injection and Y is
FGR2, then X is FGR2.

Proof. Let F be any g-closed fuzzy set in X and xtq̄F . Let us note that F -continuity
and Fg-closedness imply that f(F ) is g-closed in Y . Indeed, if f(F ) ≤ U and U
is open fuzzy set in Y , then F ≤ f−1(U)), and hence cl(F ) ≤ f−1(U). Then
f(F ) ≤ f(cl(F )) ≤ ff−1(U) ≤ U . Hence cl(f(F )) ≤ U . Thus f(F ) is g-closed.
Since f is injective, then f(xt)q̄f(F ). Since Y is FGR2, then there exist open
fuzzy sets U and V such that f(xt) ∈ U , f(F ) ≤ V and Uq̄V . Thus, we obtain
xt ∈ f−1(U), F ≤ f−1(V ) and f−1(U)q̄f−1(V ). Since f is F -continuous, then
f−1(U) and f−1(V ) are open fuzzy sets in X. Thus X is FGR2. ¤

Theorem 5.5. If f : X → Y is an F -almost open, Fgc-irresolute, F -almost closed
surjection and X is FGR2-space, then Y is FGR2.

Proof. Let V be any gopen fuzzy set in Y and yr ∈ V . Take a fuzzy point
xt ∈ f−1(yr), then we have xt ∈ f−1(V ) and f−1(V ) is g-open fuzzy set in
X. Since X is FGR2, then by Theorem 3.4, there exists an open fuzzy set
U in X such that xt ∈ U ≤ int(cl(U)) ≤ cl(U) ≤ f−1(V ). Then we have
yr ∈ f(U) ≤ f(int(cl(U))) ≤ f(cl(U)) ≤ V . Since f is F -almost open, F -closed
map, then f(int(cl(U)) is open fuzzy set in Y and f(cl(U)) is closed fuzzy set in Y .
Therefore, we obtain, yr ∈ f(int(cl(U)) ≤ cl(f(int(cl(U))) ≤ f(cl(U)) ≤ V . Thus
by Theorem 3.4, Y is FGR2. ¤

Theorem 5.6. If f : X → Y is an F -open, Fg-continuous bijection and X is
FGR3, then Y is FGR3.

Proof. Let F1 and F2 be any g-closed fuzzy sets in Y such that F1q̄F2. By Lemma
5.2, f−1(F1) and f−1(F2) are g-closed fuzzy sets in X and f−1(F1)q̄f−1(F2). Since
X is FGR3, then there exist open fuzzy sets U and V such that f−1(F1) ≤ U and
f−1(F2) ≤ V and Uq̄V . Since f is F -open and bijective, we obtain F1 ≤ f(U),
F2 ≤ f(V ) and f(U)q̄f(V ) and also f(U) and f(V ) are open fuzzy sets in Y . This
shows that Y is FGR3. ¤
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Theorem 5.7. If f : X → Y is an F continuous, Fg-closed injection and Y is
FGR3, then X is FGR3.

Proof. Let F1 and F2 be any g-closed fuzzy sets in X with F1q̄F2. As in The-
orem 5.4, f(F1) and f(F2) are g-fuzzy sets in Y . Since f is injective, then
f(F1)q̄f(F2). Since X is FGR3, then there exist open fuzzy sets U and V such
that f(F1) ≤ U, f(F2) ≤ V and Uq̄V . Thus, we obtain F1 ≤ f−1(U), F2 ≤ f−1(V )
and f−1(U)q̄f−1(V ). Since f is F -continuous, f−1(U) and f−1(V ) are open fuzzy
sets in X. This complete the proof that X is FGR3. ¤

Theorem 5.8. If f : X → Y is an Fgc-irresolute, F -open surjection and X is
FGR3, then Y is FGR3.

Proof. Let F1 and F2 be g-closed fuzzy sets in Y with F1q̄F2. Then f−1(F1) and
f−1(F2) are g-closed fuzzy sets in X and f−1(F1)q̄f−1(F2). Since X is FGR3, then
there exist open fuzzy sets U and V such that f−1(F1) ≤ U, f−1(F2) ≤ V and Uq̄V .
Then F1 ≤ f(U), F2 ≤ f(V ) and f(U)q̄f(V ). Since f is F -open, f(U) and f(V )
are open fuzzy sets in Y . This complete the proof that Y is FGR3. ¤

Using Theorems 5.5 and 5.6 one can easily prove the following theorem.

Theorem 5.9. The property of being FGR2 (FGR3) is a fuzzy topological property.
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