
KYUNGPOOK Math. J. 45(2005), 105-114

Non-homogeneous Linear Differential Equations with Solu-
tions of Finite Order

Benharrat Beläıdi
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Abstract. In this paper we investigate the growth of finite order solutions of the

differential equation f (k) + Ak−1(z)f (k−1) + · · · + A1(z)f
′

+ A0(z)f = F (z), where

A0(z), · · · , Ak−1(z) and F (z) 6≡ 0 are entire functions. We find conditions on the co-

efficients which will guarantees the existence of an asymptotic value for a transcendental

entire solution of finite order and its derivatives. We also estimate the lower bounds of

order of solutions if one of the coefficient is dominant in the sense that has larger order

than any other coefficients.

1. Introduction and statement of results

For an entire function f we denote by σ(f) the order of growth of f which is
defined by

(1.1) σ(f) = lim
r→+∞

log T (r, f)
log r

= lim
r→+∞

log log M(r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic function of f , and M(r, f) =
max|z|=r |f(z)|. See [4] for the notations and definitions.

For k ≥ 2 we consider the non-homogeneous linear differential equation

(1.2) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f
′
+ A0(z)f = F,

where A0(z), · · · , Ak−1(z) and F (z) 6≡ 0 are entire functions. It is well-known that
all solutions of equation (1.2) are entire functions. It is also known that if there
exists one As (0 ≤ s ≤ k − 1) such that As is transcendental with

max {σ(Aj)(j 6= s), σ(F )} < σ(As) ≤ 1/2,

then every transcendental solution f of (1.2) is of infinite order ([5]). Recently the
growth theory of the differential equations has been an active research area, and
the growth problems of the non-homogeneous linear differential equations are of

Received January 8, 2004, and, in revised form, May 18, 2004.
2000 Mathematics Subject Classification: 30D35, 34M10.
Key words and phrases: linear differential equations, growth of entire solutions.

105



106 Benharrat Beläıdi

very important aspect in this area. In [1] Beläıdi and Hamani have investigated the
growth of solutions of the differential equation

(1.3) f (k) + Ak−1(z)f (k−1) + · · ·+ A1(z)f
′
+ A0(z)f = 0,

where A0(z), · · · , Ak−1(z) are entire functions with A0(z) 6≡ 0 and have proved the
following results:

Theorem A ([1]). Let A0(z), · · · , Ak−1(z) with A0(z) 6≡ 0 be entire functions such
that for real constants α, β, θ1 and θ2 where α > 0, β > 0 and θ1 < θ2, we have

(1.4) |A1(z)| ≥ exp
{

(1 + o(1))α |z|β
}

and

(1.5) |Aj(z)| ≤ exp
{

o(1) |z|β
}

(j = 0, 2, · · · , k − 1)

as z → ∞ in θ1 ≤ arg z ≤ θ2. Let ε > 0 be a given small constant, and let S(ε)
denote the angle θ1 + ε ≤ arg z ≤ θ2− ε. If f 6≡ 0 is a solution of equation (1.3)with
σ(f) < +∞, then the following conditions hold:

(i) There exists a constant b 6= 0 such that f(z) → b as z →∞ in S(ε).
Furthermore,

(1.6) |f(z)− b| ≤ exp
{
− (1 + o(1))α |z|β

}

as z →∞ in S(ε).

(ii) For each integer m ≥ 1

(1.7)
∣∣∣f (m)(z)

∣∣∣ ≤ exp
{
− (1 + o(1))α |z|β

}

as z →∞ in S(ε).

Theorem B ([1]). Let A0(z), · · · , Ak−1(z) be entire functions that satisfy
max{σ(Aj) : j = 0, 2, · · · , k − 1} < σ(A1). Then every solution f 6≡ 0 of (1.3) of
finite order satisfies σ(f) ≥ σ(A1).

The main aim of this paper is to extend the above results to the non-
homogeneous linear differential equation (1.2) in the following theorems, in which
the dominating coefficient A1(z) is replaced by As(z).

Theorem 1.1. Suppose that A0(z), · · · , Ak−1(z) and F 6≡ 0 are entire functions
such that for real constants α, β, θ1 and θ2 where α > 0, β > 0 and θ1 < θ2, we
have for some s = 1, · · · , k − 1,

(1.8) |As(z)| ≥ exp
{

(1 + o(1))α |z|β
}
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and

(1.9) max {|Aj(z)| , |F (z)|} ≤ exp
{

o(1) |z|β
}

for all j = 0, · · · , s − 1, s + 1, · · · , k − 1 as z → ∞ in θ1 ≤ arg z ≤ θ2. For
given ε > 0 small enough let S(ε) denote the angle θ1 + ε ≤ arg z ≤ θ2 − ε. If f
is a transcendental solution of equation (1.2) with σ(f) < +∞, then the following
conditions hold:

(i) There exists a constant bs−1 such that f (s−1)(z) → bs−1as z → ∞ in S(ε).
Indeed,

(1.10)
∣∣∣f (s−1)(z)− bs−1

∣∣∣ ≤ exp
{
−(1 + o(1))α |z|β

}

as z →∞ in S(ε).

(ii) For each integer m ≥ s

(1.11)
∣∣∣f (m)(z)

∣∣∣ ≤ exp
{
−(1 + o(1))α |z|β

}

as z →∞ in S(ε).

Theorem 1.2. Let A0(z), · · · , Ak−1(z) and F 6≡ 0 be entire functions such that for
some integer s, 1 ≤ s ≤ k − 1, we have max{σ(Aj) (j 6= s), σ(F )} < σ(As). Then
every transcendental solution f of (1.2) of finite order satisfies σ(f) ≥ σ(As).

2. Preliminary lemmas

Our proofs depend mainly upon the following Lemmas.

Lemma 2.1 ([3, p. 89]). Let f be a transcendental entire function of finite order
σ, let Γ = {(k1, j1), (k2, j2), · · · , (km, jm)} denote a finite set of distinct pairs of
integers that satisfy ki > ji ≥ 0(i = 1, · · · ,m), and let ε > 0 be a given constant.
Then there exists a set E ⊂ [0, 2π) that has linear measure zero, such that if
ψ0 ∈ [0, 2π) − E, then there is a constant R0 = R0(ψ0) > 1 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0, and for all (k, j) ∈ Γ, we have

(2.1)
∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε)
.

Lemma 2.2 ([2], [6]). Let f(z) be an entire function and suppose that
∣∣f (k)(z)

∣∣ is
unbounded on some ray arg z = θ. Then there exists an infinite sequence of points
zn = rnei θ (n = 1, 2, · · · ), where rn → +∞, such that f (k)(zn) →∞ and

(2.2)
∣∣∣∣
f (j)(zn)
f (k)(zn)

∣∣∣∣ ≤
1

(k − j)!
(1 + o(1)) |zn|k−j (j = 0, · · · , k − 1).
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Lemma 2.3 ([3]). Let f(z) be a meromorphic function, let j be a positive integer,
and let α > 1 be a real constant. Then there exists a constant R > 0 such that for
all r ≥ R, we have

(2.3) T (r, f (j)) ≤ (j + 2)T (αr, f).

3. Proof of Theorem 1.1

Suppose that f is a transcendental solution of (1.2) with σ(f) < +∞. Set
ρ = σ(f). Then by Lemma 2.1, there exists a set E ⊂ [0, 2π) that has linear measure
zero, such that if ψ0 ∈ [0, 2π)− E, then for all k > s ≥ 1, and all j = s + 1, · · · , k,

(3.1)
∣∣∣∣
f (j)(z)
f (s)(z)

∣∣∣∣ ≤ |z|(j−s) (ρ−1+ε) ≤ |z|(k−s)ρ (0 < ε < 1)

as z →∞ along arg z = ψ0.
Now suppose that

∣∣∣f (s)
(z)

∣∣∣ is unbounded on some ray arg z = φ0 where φ0 ∈
[θ1, θ2] − E. Then by Lemma 2.2, there exists an infinite sequence of points zn =
rnei φ0 , where rn → +∞ such that f (s)(zn) →∞ and

(3.2)
∣∣∣∣
f (j)(zn)
f (s)(zn)

∣∣∣∣ ≤
1

(s− j)!
(1 + o(1)) |zn|s−j ≤ 2 |zn|s (j = 0, · · · , s− 1)

as zn →∞. By (1.2) we have

f (s)

[
f (k)

f (s)

1
As

+
f (k−1)

f (s)

Ak−1

As
+ · · ·+ f (s+1)

f (s)

As+1

As
(3.3)

+1 +
f (s−1)

f (s)

As−1

As
+ · · ·+ f

f (s)

A0

As

]
=

F

As
.

Combining (3.1), (3.2), (1.8) and (1.9) together with (3.3) yields that f (s)(zn) → 0
as zn → ∞. This contradicts that f (s)(zn) → ∞ as zn → ∞. Therefore,

∣∣f (s)(z)
∣∣

is bounded on any ray arg z = φ where φ ∈ [θ1, θ2] − E. It then follows from the
classical Phragmén-Lindelöf theorem [7, p.214] that there exists a constant M > 0
such that

(3.4)
∣∣∣f (s)(z)

∣∣∣ ≤ M

for all z ∈ S(ε).
If θ0 ∈ [θ1 + ε, θ2 − ε] − E, then when arg z = θ0, we obtain for all m < s, by

(s−m)-fold iterated integration along the ray under consideration,

f (m)(z) = f (m)(0) + f (m+1)(0)z + · · ·+ 1
(s−m− 1)!

f (s−1)(0)zs−m−1(3.5)

+
∫ z

0

· · ·
∫ ζ

0

∫ ξ

0

f (s)(t)dtdξ · · · du.
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Therefore, by an elementary triangle inequality and (3.4), we obtain from (3.5)
∣∣∣f (m)(z)

∣∣∣(3.6)

≤
∣∣∣f (m)(0)

∣∣∣ +
∣∣∣f (m+1)(0)

∣∣∣ |z|+ · · ·+ 1
(s−m− 1)!

∣∣∣f (s−1)(0)
∣∣∣ |z|s−m−1

+ M

∫ z

0

· · ·
∫ ζ

0

∫ ξ

0

|dt| |dξ| · · · |du| = O(|z|s−m).

We obtain from (1.2)

|As(z)|
∣∣∣f (s)

∣∣∣(3.7)

≤ |F |+ (
∣∣∣∣
f (k)

f (s)

∣∣∣∣ + |Ak−1(z)|
∣∣∣∣
f (k−1)

f (s)

∣∣∣∣ + · · ·+ |As+1(z)|
∣∣∣∣
f (s+1)

f (s)

∣∣∣∣)
∣∣∣f (s)

∣∣∣

+ |As−1(z)|
∣∣∣f (s−1)

∣∣∣ + · · ·+ |A1(z)|
∣∣∣f ′

∣∣∣ + |A0(z)| |f | .

Using (3.1), (3.4), (3.6), (1.8) and (1.9), we obtain from (3.7)

exp
{

(1 + o(1))α |z|β
} ∣∣∣f (s)

∣∣∣(3.8)

≤ exp
{

o(1) |z|β
}

+ |z|(k−s)ρ (1 + (k − s− 1) exp{o(1) |z|β})
∣∣∣f (s)

∣∣∣
+ (O(|z|s) + · · ·+ O(|z|)) exp{o(1) |z|β}

≤ exp
{

o(1) |z|β
}

+ |z|(k−s)ρ (1 + (k − s− 1) exp
{

o(1) |z|β
}

)M

+ (O(|z|s) + · · ·+ O(|z|)) exp
{

o(1) |z|β
}

as z →∞ along arg z = θ0. From (3.8), we conclude that
∣∣∣f (s)

(z)
∣∣∣(3.9)

≤
exp

{
o(1) |z|β

}
+ |z|(k−s)ρ (1 + (k − s− 1) exp

{
o(1) |z|β

}
)M

exp
{

(1 + o(1))α |z|β
}

+
(O(|z|s) + · · ·+ O(|z|)) exp

{
o(1) |z|β

}

exp
{

(1 + o(1))α |z|β
}

≤ exp
{
−(1 + o(1))α |z|β

}
.

Using an application of the Phragmén-Lindelöf theorem to (3.9), we can derive that

(3.10)
∣∣∣f (s)(z)

∣∣∣ ≤ exp
{
−(1 + o(1))α |z|β

}
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as z →∞ in S(2ε). This proves the second assertion for m = s.

Now let z ∈ S(3ε) where |z| > 1, let γ be a circle of radius r = 1 with center at
z, and let m > s be an integer. Then by the Cauchy integral formula and (3.10),
we obtain as z →∞ in S(3ε),

∣∣∣f (m)(z)
∣∣∣ ≤ (m− s)!

2π

∮

γ

∣∣∣f (s)
(u)

∣∣∣
|u− z|m−s+1 |du|(3.11)

≤ (m− s)!
2π

.2π exp
{−(1 + o(1))α(|z| − 1)β

}

≤ exp{−(1 + o(1))α |z|β (1− 1
|z| )

β}

≤ exp
{
−(1 + o(1))α |z|β

}
.

This proves the second assertion for m > s.

Now fix θ where θ1 + ε ≤ θ ≤ θ2 − ε, and set

(3.12) as−1 =

+∞∫

0

f (s)(teiθ)eiθdt.

By (3.10), it very easy to obtain the existence of as−1 and that as−1 ∈ C. Indeed,
integrating f

(s)
(u) along the sector boundary 0 → R eiψ → R eiθ → 0, by using

(3.10) and Cauchy’s theorem to conclude that the integral of f (s)(u) over the arc[
Reiψ,Reiθ

]
tends to zero as R → +∞, the independence from θ immediately

follows. Let z = |z| ei ψ where θ1 + ε ≤ ψ ≤ θ2 − ε. Then, we obtain from (3.12)

f (s−1)(z)− f (s−1)(0)− as−1(3.13)

=

z∫

0

f
(s)

(u)du−
+∞∫

0

f (s)(teiψ)eiψdt

=

z∫

0

f
(s)

(u)du−
(|z|∫

0

f (s)(teiψ)eiψdt +

+∞∫

|z|

f (s)(teiψ)eiψdt

)

= −
+∞∫

|z|

f (s)(teiψ)eiψdt.
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Then, we obtain from (3.10) and (3.13)

∣∣∣f (s−1)(z)− f (s−1)(0)− as−1

∣∣∣ =

∣∣∣∣∣∣∣

+∞∫

|z|

f (s)(teiψ)eiψdt

∣∣∣∣∣∣∣
(3.14)

≤
+∞∫

|z|

exp
{−(1 + o(1))αtβ

}
dt

≤ 1

(1 + o(1))αβ |z|
β−1

2 exp
{

(1 + o(1))α |z|
β

2

}
+∞∫

|z|

(1 + o(1))αβ tβ−1

2

exp
{

(1 + o(1))α tβ

2

}dt

≤ 1

(1 + o(1))αβ |z|
β−1

2 exp
{

(1 + o(1))α |z|
β

2

} exp

{
−(1 + o(1))α

|z|β
2

}

≤ exp
{
−(1 + o(1))α |z|β

}

as z → ∞ in S(ε), where bs−1 = f (s−1)(0) + as−1. We note also that f (s−1)(z) →
bs−1 as z →∞ in S(ε) from (3.14). The proof of Theorem 1.1 is complete. ¤

Next, we give two examples that illustrate Theorem 1.1.

Example 3.1. Consider the differential equation

(3.15) f ′′′ − ze−zf ′′ − ezf ′ + (ez + 1)f = (z + 1)ez.

In this equation, for z = reiθ (r → +∞) and 3π
4 ≤ θ ≤ 5π

6 we have

|A2(z)| = | − ze−z| = r exp(−r cos θ) ≥ exp((1 + o(1))
√

2
2

r)

|A1(z)| = |−ez| ≤ exp(r cos θ) ≤ exp(o(1)r)
|A0(z)| = |ez + 1| ≤ 1 + exp(r cos θ) ≤ exp(o(1)r)
|F (z)| = |(z + 1)ez| = (r + 1) exp(r cos θ) ≤ exp(o(1)r).

Hence the conditions (1.8) and (1.9) of Theorem 1.1 are verified (α =
√

2
2 , β = 1),

with A2(z) = −ze−z is the dominating coefficient. The function f(z) = ez + z with
σ(f) = 1 satisfies equation (3.15) and the relations (1.10), (1.11) with b1 = 1.

Example 3.2. Consider the differential equation

(3.16) f ′′′ − ezf ′′ − e−zf ′ + ezf = ez − 1.
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In this equation, for z = reiθ(r → +∞) and 2π
3 ≤ θ ≤ 3π

4 we have

|A1(z)| = | − e−z| = exp(−r cos θ) ≥ exp((1 + o(1))
r

2
)

|A0(z)| = |ez| = exp(r cos θ) ≤ exp(o(1)r)
|A2(z)| = | − ez| = exp(r cos θ) ≤ exp(o(1)r)
|F (z)| = |ez − 1| ≤ 1 + exp(r cos θ) ≤ exp(o(1)r).

Obviously, the conditions (1.8) and (1.9) of Theorem 1.1 are verified (α = 1
2 , β = 1),

with A1(z) = −e−z is the dominating coefficient. The function f(z) = ez with
σ(f) = 1 satisfies equation (3.16) and the relations (1.10), (1.11) with b0 = 0.

4. Proof of Theorem 1.2

Let max {σ(Aj) ( j 6= s), σ(F )} = β < σ(As) = α. Suppose that f is a tran-
scendental solution of (1.2) with σ(f) < +∞. It follows from (1.2) that

As(z) =
F (z)
f (s)

− f (k)

f (s)
−Ak−1(z)

f (k−1)

f (s)
− · · · −As+1(z)

f (s+1)

f (s)
(4.1)

−As−1(z)
f (s−1)

f (s)
− · · · −A1(z)

f ′

f (s)
−A0(z)

f

f (s)
.

Applying the lemma of the logarithmic derivative, we have

(4.2) m(r,
f (j+1)

f (j)
) = O(log r) (j = 0, · · · , k − 1), (σ(f) < +∞),

holds for all r outside a set E ⊂ (0, +∞) with a linear measure m(E) = δ < +∞.
For j = 0, · · · , k − 1, and since

(4.3) T (r, f (j+1)) ≤ 2T (r, f (j)) + m(r,
f (j+1)

f (j)
),

by using Lemma 2.3 and (4.2) we obtain from (4.3)

(4.4) T (r, f (j+1)) ≤ 2T (r, f (j)) + O(log r) ≤ 2(j + 2)T (2r, f) + O(log r).

By (4.4), we can obtain from (4.1) that

(4.5) T (r,As) ≤ T (r, F ) + cT (2r, f) +
∑

j 6=s

T (r,Aj) + O(log r) (r /∈ E),

where c is a constant. Since σ(As) = α, there exists
{

r
′
n

}
(r
′
n → +∞) such that

(4.6) lim
r′n→+∞

log T (r
′
n, As)

log r′n
= α.
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Since m(E) = δ < +∞, there exists a point rn ∈
[
r
′
n, r

′
n + δ + 1

]
− E. From

(4.7)
log T (rn, As)

log rn
≥ log T (r

′
n, As)

log(r′n + δ + 1)
=

log T (r
′
n, As)

log r′n + log(1 + (δ + 1)/r′n)

we get

(4.8) lim
rn→+∞

log T (rn, As)
log rn

≥ α.

So for any given ε(0 < 2ε < α− β), and for j 6= s

(4.9) T (rn, Aj) ≤ rβ+ε
n , T (rn, F ) ≤ rβ+ε

n and T (rn, As) ≥ rα−ε
n

holds for sufficiently large rn. By (4.5) and (4.9) we obtain for sufficiently large rn

(4.10) rα−ε
n ≤ krβ+ε

n + cT (2rn, f) + O(log rn).

Therefore,

(4.11) lim
rn→+∞

log T (rn, f)
log rn

≥ α− ε

and since ε is arbitrary, we get σ(f) ≥ σ(As) = α. This proves Theorem 1.2. ¤

Next, we give an example that illustrates Theorem 1.2.

Example 4.1. Consider the differential equation

(4.12) f ′′′ + e−z2
f ′′ − 6zf ′ − (8z3 + 12z + 7)f = (4z2 + 4z + 3)ez.

In this equation we have

A2(z) = e−z2
, σ(A2) = 2

A0(z) = −(8z3 + 12z + 7), σ(A0) = 0
A1(z) = −6z, σ(A1) = 0
F (z) = (4z2 + 4z + 3)ez, σ(F ) = 1.

Hence the conditions of Theorem 1.2 are verified. The function f(z) = ez2+z with
σ(f) = 2 satisfies equation (4.12) and the relation σ(f) ≥ σ(A2).
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