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Abstract. In this expository paper we survey basic results on isotropic immersions.

1. Introduction

An n-dimensional real space form Mn(c;R) is a Riemannian manifold of con-
stant sectional curvature c, which is locally congruent to either a standard sphere
Sn(c), a Euclidean space Rn or a real hyperbolic space RHn(c), according as c is
positive, zero or negative.

We recall the notion of isotropic immersions introduced by O’Neill [18]. An
isometric immersion f : M → M̃ of a Riemannian manifold M into an ambient
Riemannian manifold M̃ (with metric 〈 , 〉) is said to be isotropic at x ∈ M if
‖σ(X, X)‖/‖X‖2(= λ(x)) does not depend on the choice of X(6= 0) ∈ TxM . If the
immersion is isotropic at every point, then the immersion is said to be isotropic.
When the function λ = λ(x) is constant on M , M is called a constant (λ-)isotropic
submanifold. We note that a totally umbilic immersion is isotropic, but not vice
versa. The class of isotropic submanifolds gives nice examples in submanifold theory.
For example, take a G-equivariant isometric immersion f of a rank one symmetric
space M(= G/K) into an arbitrary Riemannian homogeneous space M̃(= G̃/K̃).
Then this submanifold (M, f) is a (constant) isotropic submanifold. We here em-
phasize the fact that for each geodesic γ = γ(s) on the submanifold (M, f) the curve
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f ◦ γ is a one-parameter subgroup of the isometry group of the ambient space M̃ .
This fact tells us that study of isotropic immersions is one of the most interesting
objects in submanifold theory.

The purpose of this paper is to survey fundamental results related to the fol-
lowing four problems:

Problem 1. Find a necessary and sufficient condition for an isotropic immersion
of M to be totally umbilic in an arbitrary Riemannian manifold M̃ .

Problem 2. Give a geometric meaning of a constant isotropic immersion of M into
an arbitrary Riemannian manifold M̃ .

Proclaim 3. Classify isotropic immersions of Mn with low codimension p into a
real space form M̃n+p(c;R).

Problem 4. Give a sufficient condition that an isotropic immersion of a rank one
symmetric space M into a real space form M̃(c;R) has parallel second fundamental
form.

In section 2, we give an answer to Problem 1 in terms of shape operators of
M in the ambient space M̃ (Theorem 1). In section 3, we provide an answer to
Problem 2 by studying circles on the submanifold M (Theorem 2). In section 4,
we solve Problem 3 in the case of p 5 (n + 2)/2 (Theorem 3). In section 5, we
study Problem 4 one by one for each rank one symmetric space M by using an
inequality related to the codimension p of M (Theorems 4, 5, 6 and 7). In section 6
we investigate Problem 4 from a different point of view. We solve this problem by
using inequalities related to mean curvatures of these submanifolds (Theorems 8, 9,
10 and 11). In the last section we pose some open problems on isotropic immersions.

2. Characterization of totally umbilic immersions

In this section we investigate the second fundamental form at one point. Let
V and W be Euclidean vector spaces with inner products 〈 , 〉, whose dimensions
are n and k, respectively. We abstract the second fundamental form at one point
to a symmetric bilinear form σ : V × V → W . We adopt for σ the usual notation
and terminology of isometric immersions. Let S2(V ) be the space of all symmetric
endomorphisms of V . Then we define the linear map A : W → S2(V ) by 〈Aξx, y〉 =
〈σ(x, y), ξ〉 for x, y ∈ V and ξ ∈ W . We say that σ is λ-isotropic if there exists a
real constant λ such that ‖σ(x, x)‖ = λ for every unit vector x ∈ V . We prepare
the following without proof for the later use ([18]):

Lemma 1. Let σ : V × V → W be a symmetric bilinear form. Then the following
are equivalent:

(1) σ is λ-isotropic,

(2) 〈σ(x, x), σ(x, y)〉 = 0 for each orthogonal pair of vectors x, y ∈ V ,
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(3) 〈σ(x, y), σ(z, w)〉 + 〈σ(x, z), σ(y, w)〉 + 〈σ(x, w), σ(y, z)〉 = λ2(〈x, y〉〈z, w〉 +
〈x, z〉〈y, w〉+ 〈x,w〉〈y, z〉) for any vectors x, y, z, w ∈ V .

We provide a characterization of umbilic bilinear forms ([17]):

Proposition 1. Let σ : V × V → W be a symmetric bilinear form. Then the
following are equivalent:

(i) σ is umbilic,

(ii) σ is isotropic and for any ξ, η ∈ W AξAη = AηAξ.

Proof. (i) =⇒ (ii): By assumption we have Aξ = 〈ξ, h〉Id for any ξ ∈ W , where h is
the mean curvature vector. Hence Aξ and Aη commute for any ξ, η ∈ W .

(ii) =⇒ (i): Suppose that σ is λ-isotropic. We take a unit vector x ∈ V and
put ξ = σ(x, x) ∈ W . It follows from the statement (2) in Lemma 1 that x is an
eigenvector of Aξ with eigenvalue λ2. We choose an orthonormal basis {e1, · · · , en}
of V satisfying that Aξei = λiei (i = 1, · · · , n), where e1 = x and λ1 = λ2. We fix
i(= 2). By the statement (3) in Lemma 1 we find that

〈σ(x, ei), σ(x, ej)〉 = (λ2 − λi)/2 · δij for any j,

and hence Aσ(x,ei)x = (λ2 − λi)/2 · ei. Since AξAσ(x,ei)x = Aσ(x,ei)Aξx, we obtain

(λ2 − λi)λi/2 = (λ2 − λi)λ2/2

so that λi = λ2 for i = 2, that is, V is the eigenspace of Aξ with eigenvalue λ2.
Therefore we find that σ is umbilic. ¤

As an immediate consequence of this proposition we have the following ([17]):

Theorem 1. Let M be a Riemannian submanifold in a Riemannian manifold M̃ .
Then the following are equivalent:

(i) M is totally umbilic in M̃ ,

(ii) M is isotropic in M̃ and for any normal vectors ξ, η on M AξAη = AηAξ

holds.

Let the ambient space M̃ be a real space form M̃(c;R) of curvature c. Then it
follows from Theorem 1 that

Corollary. Let M be a Riemannian submanifold in a real space form M̃(c;R).
Then the following are equivalent:

(i) M is totally umbilic in M̃(c;R),

(ii) M is an isotropic submanifold with flat normal connection in M̃(c;R).
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3. Geometric meaning of constant isotropic immersions

A smooth curve γ = γ(s) parametrized by its arclength s in a Riemannian
manifold M is called a circle if there exist a field Y = Ys of unit vectors along γ
and a constant κ(= 0) satisfying

(3.1)

{
∇γ̇ γ̇ = κY

∇γ̇Y = −κγ̇,

where γ̇ denotes the unit tangent vector of γ and ∇γ̇ the covariant differentiation
along γ with respect to the Riemannian connection∇ of M . The constant κ is called
the curvature of the circle. A circle of null curvature is nothing but a geodesic. For
each point x ∈ M , each orthonormal pair (u, v) of vectors at x and each positive
constant κ, there exists locally a unique circle γ = γ(s) on M with initial condition
that γ(0) = x, γ̇(0) = u and ∇γ̇ γ̇(0) = κv. The purpose of this section is to prove
the following ([15]):

Theorem 2. Let M be a connected Riemannian submanifold of a Riemannian
manifold M̃ through an isometric immersion f . Then the following are equivalent:

(i) M is a constant (λ-) isotropic submanifold of M̃ ,

(ii) there exists κ > 0 satisfying that for each circle γ of curvature κ on the
submanifold M the curve f ◦ γ in M̃ has constant first curvature κ1 along
this curve.

Proof. (i) ⇒ (ii): Let f : M → M̃ be a constant λ-isotropic immersion. In the
following, for simplicity we also denote f ◦ γ by γ. It follows from equation (3.1)
and the formula of Gauss ∇̃XZ = ∇XZ + σ(X, Z) that

(3.2) ∇̃γ̇(s)γ̇(s) = κYs + σ(γ̇(s), γ̇(s)), s ∈ I.

Here ∇̃ is the Riemannian connection of the ambient space M̃ and I is some open
interval on R. Then from (3.2) we can see that the first curvature κ1 = ‖∇̃γ̇ γ̇‖ of
the curve f ◦ γ is equal to

√
κ2 + λ2, which is constant on I.

(ii) ⇒ (i): Let f : M → M̃ be an isometric immersion satisfying the condition
(ii). We take a point x ∈ M and choose an arbitrary orthonormal pair of vectors
u, v ∈ TxM . Let γ = γ(s), s ∈ I be a circle of curvature κ on the submanifold
M with initial condition that γ(0) = x, γ̇(0) = u and ∇γ̇ γ̇(0) = κv. By condition
(ii) the first curvature κ1 = ‖∇̃γ̇ γ̇‖ of the curve f ◦ γ is constant, so that equation
(3.2) implies ‖σ(γ̇, γ̇)‖ is constant on I. Hence, denoting by D the connection of
the normal bundle of M in M̃ , from (3.1) we obtain

0 =
d

ds
‖σ(γ̇, γ̇)‖2 = 2〈Dγ̇(σ(γ̇, γ̇)), σ(γ̇, γ̇)〉(3.3)

= 2〈(∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇), σ(γ̇, γ̇)〉
= 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉+ 4κ〈σ(γ̇, γ̇), σ(γ̇, Y )〉.
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Evaluating equation (3.3) at s = 0, we get

(3.4) 〈(∇̄uσ)(u, u), σ(u, u)〉+ 2κ〈σ(u, u), σ(u, v)〉 = 0.

On the other hand, for another circle ρ = ρ(s) of the same curvature κ on the
submanifold M with initial condition that ρ(0) = x, ρ̇(0) = u and ∇ρ̇ρ̇(0) = −κv,
we have

(3.5) 〈(∇̄uσ)(u, u), σ(u, u)〉 − 2κ〈σ(u, u), σ(u, v)〉 = 0

which corresponds to equation (3.4). Thus, from (3.4) and (3.5) we can see that
〈σ(u, u), σ(u, v)〉 = 0 for any orthonormal pair of vectors u, v at each point x of M ,
so that the submanifold M is (λ-) isotropic in M̃ through the isometric immersion
f by Lemma 1.

Next, we shall show that λ : M → R is constant. It follows from (3.4) and (3.5)
that

〈(∇̄uσ)(u, u), σ(u, u)〉 = 0 for every unit vecor u at each point x of Mn.

Then, for every geodesic τ = τ(s) on the submanifold M we see that λ = λ(s) is
constant along τ . Therefore we can conclude that λ is constant on M . ¤

4. Isotropic submanifolds with low codimension in a real space form

We shall give a classification theorem of isotropic submanifolds with low codi-
mension in a real space form ([17]). For this purpose we prepare the following
algebraic lemma ([22]):

Lemma 2. Let V and W be Euclidean vector spaces with inner products 〈 , 〉,
where dim V = n. Let σ : V × V → W be a λ-isotropic symmetric bilinear form.
Suppose that dim W 5 (n + 2)/2. Then σ satisfies one of the following.

(i) σ is umbilic, that is, there exists ξ ∈ W satisfying σ(x, y) = 〈x, y〉ξ.
(ii) n = 2, 4, 8, 16 and dim W = (n + 2)/2.

In addition, in case of (ii), the following statements (a) and (b) hold.

(a) For each unit vector x ∈ V there exists an orthonormal basis {e1 =
x, e2, · · · , en} for V satisfying σ(ei, ei) = σ(x, x) for 1 5 i 5 n/2 and
σ(ej , ej) = −σ(x, x) for (n + 2)/2 5 j 5 n.

(b) For each unit vector ξ ∈ W there exists an orthonormal basis {e1, · · · , en}
for V satisfying Aξei = λei for 1 5 i 5 n/2 and Aξej = −λej for
(n + 2)/2 5 j 5 n.

Proof. For ξ ∈ W we set a symmetric endomorphism Aξ : V → V defined by
〈Aξx, y〉 = 〈σ(x, y), ξ〉. In order to prove our Lemma we shall check several facts.
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Fact 1. For each unit vector x ∈ V we have −λ2 5 (eigenvalues of Aσ(x,x)) 5 λ2.
Moreover, if we put Aσ(x,x)y = λ2y (resp. Aσ(x,x)y = −λ2y) for a unit vector y,
then σ(y, y) = σ(x, x) (resp. σ(y, y) = −σ(x, x)).

We check this fact. Let m 5 (eigenvalues of Aσ(x,x)) 5 M . Then it is well-
known that

m = min
|y|=1

〈Aσ(x,x)y, y〉 = min
|y|=1

〈σ(x, x), σ(y, y)〉
M = max

|y|=1
〈Aσ(x,x)y, y〉 = max

|y|=1
〈σ(x, x), σ(y, y)〉.

So we have 〈σ(x, x), σ(y, y)〉 = −‖σ(x, x)‖‖σ(y, y)‖ = −λ2 and this equality sign
holds if and only if σ(y, y) = −σ(x, x). Similarly we see that 〈σ(x, x), σ(y, y)〉 5
‖σ(x, x)‖‖σ(y, y)‖ = λ2 and this equality sign holds if and only if σ(y, y) = σ(x, x).

Next, for a unit x ∈ V we consider a linear subspace Vx = {y ∈ V |Aσ(x,x)y =
λ2y}. Then as a corollary of Fact 1 we can see that

(i) If there exists a unit vector x ∈ V with Vx = V , then σ is umbilic.

(ii) If Vx ∩ Vy 6= {0} for ∃x, y ∈ V , then Vx = Vy.

Fact 2. For each unit x ∈ V we know that dim Vx = 1 and σ(y, z) = 〈y, z〉σ(x, x)
for ∀y, z ∈ Vx.

In fact, it follows from x ∈ Vx that dim Vx = 1. Fact 1 implies that σ(y, y) =
〈y, y〉σ(x, x) for ∀y ∈ Vx. Hence, symmetrizing this equation, we obtain Fact 2.

We consider a linear subspace V ′
x = {y ∈ V |Aσ(x,x)y = −λ2y} for a unit x ∈ V .

Fact 2 ′. If V ′
x 6= {0}, then for any unit y ∈ V ′

x we see V ′
x = Vy.

It follows from Fact 1 that for unit y ∈ V ′
x we see σ(z, z) = 〈z, z〉σ(y, y) for

∀z ∈ V ′
x, so that V ′

x = Vy.
Fact 2 ′′. We denote by µ the minimum eigenvalue of Aσ(x,x) for a unit x ∈ V .

Let y be a unit eigenvector of Aσ(x,x) with eigenvalue µ. Suppose that µ 6= λ2.
Then every unit z ∈ Vy is an eigenvector of Aσ(x,x) with eigenvalue µ, so that in
particular Vx⊥Vy.

Note that σ(z, z) = σ(y, y). So 〈Aσ(x,x)z, z〉 = 〈σ(x, x), σ(y, y)〉 = µ. This,
together with the assumption on µ, shows that z is an eigenvector with the same
eigenvalue µ.

Fact 3. If dim Vx < dim V for a unit x ∈ V , then dim W = max{r+1, n−r+1},
where dim Vx = r and dim V = n.

We consider a linear mapping σx : V → W defined by σx(y) = σ(x, y) for y ∈ V .
Then we find kerσx = {y ∈ Vx|〈x, y〉 = 0}.

In fact, Lemma 1(3) tells us that y ∈ kerσx is equivalent to

2λ2〈x, y〉2 + {λ2〈y, y〉 − 〈σ(x, x), σ(y, y)〉} = 0.
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Note that these two terms of the left-hand side of the above equation are nonnega-
tive. Thus we have 〈x, y〉 = 0 and y ∈ Vx.

Hence

dim W = dim Imσx = dim V − dimkerσx

= n− (r − 1) = n− r + 1.

On the other hand, by assumption there exists a unit y 6∈ Vx. Then Fact 1
yields that Vx ∩ Vy = {0}. So dim Vy 5 n− r. Again by applying our argument to
a linear mapping σy, we get dim W = n− (n− r) + 1 = r + 1. Therefore we obtain
Fact 3.

We shall prove our Lemma from now on by using the above facts. Suppose that
σ is not umbilic. Take a unit vector x ∈ V . Note that dim Vx = r < n. It follows
from our assumption dim W 5 (n + 2)/2 and Fact 3 that r + 1 5 (n + 2)/2 and
n − r + 1 5 (n + 2)/2. Thus we see that r = n/2 and dim W = (n + 2)/2. In the
following, we put n/2 = m. We take an orthonormal basis {e1 = x, e2, · · · , em} of
Vx. Fact 1 yields σ(ei, ej) = δijσ(x, x) for i, j ∈ {1, · · · , n}. Let u be a unit vector
of V ⊥

x ( 6= φ). We set 〈σ(u, u), σ(x, x)〉 = µ. We remark that µ < λ2. From Lemma
1(3) we find that

〈σ(u, ei), σ(u, ej)〉 =
1
2
(λ2 − µ)δij ,

〈σ(u, ei), σ(x, x)〉 = 〈σ(u, ei), σ(ei, ei)〉 = 0 for i = 1, · · · ,m.

These imply that {σ(x, x), σ(u, e1), · · · , σ(u, em)} is an orthogonal basis of W . On
the other hand, 〈σ(u, u), σ(u, ei)〉 = 0 for i = 1, · · · , m. Then σ(u, u) = −σ(x, x).
So we obtain (a) in our Lemma.

We next prove (b). Our vector space V is decomposed as: V = Vx ⊕ V ′
x, where

V ′
x = {u ∈ V |Aσ(x,x)u = −λ2u}. We consider a mapping ϕ : Sn−1(1)(⊂ V ) →

Sm(1)(⊂ W ) defined by ϕ(x) = (1/λ)σ(x, x). We shall show that the mapping ϕ is
surjective:

We easily see that the differential at x of ϕ is given by dϕx(u) = (2/λ)σ(x, u) =
(2/λ)σx(u) for u ∈ TxSn−1 ∼= {u ∈ V |〈u, x〉 = 0}(⊃ V ′

x). We note that σx is
injective on V ′

x, because kerσx = {y ∈ Vx|〈x, y〉 = 0}. Hence rank dϕx = m for
∀x ∈ Sn−1, which implies that ϕ(Sn−1(1)) is open and closed in Sm(1). Therefore
ϕ is surjective. So we obtain (b) in our Lemma.

We finally prove that n = 2, 4, 8, 16. Let W ′ = {ξ ∈ W |〈ξ, σ(x, x)〉 = 0} for a
fixed unit x ∈ V . Remark that dim W ′ = m. For each unit y ∈ Vx we see that
〈σ(y, v), σ(x, x)〉 = 〈σ(y, v), σ(y, y)〉 = 0. So we get

σ(y, v) ∈ W ′ for y ∈ Vx, v ∈ V ′
x.

Moreover we have the following equations:

〈σ(y, u), σ(y, v)〉 = λ2〈u, v〉 for unit y ∈ Vx and u, v ∈ V ′
x
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and
〈σ(y, v), σ(z, v)〉 = λ2〈y, z〉 for y, z ∈ Vx and unit v ∈ V ′

x.

By virtue of these equations we can continue our argument as follows.
Let {e1 = x, e2, · · · , em} be an orthonormal basis of Vx. We consider a linear

isometry ϕ : V ′
x → W ′ defined by ϕ(v) = (1/λ)σx(v) = (1/λ)σ(x, v) for v ∈ V ′

x.
Then the mapping ϕ induces an isometry on the sphere Sm−1(1). For the sake of
simplicity we denote by the same letter ϕ this isometry. We define a global field of
orthonormal frames E1, · · · , Em−1 on Sm−1(1) as:

Ej(ξ) =
1
λ

σ(ej+1, ϕ
−1(ξ)) for j = 1, · · · ,m− 1.

Then our sphere Sm−1(1) is parallelizable, so that m−1 = 0, 1, 3, 7 (see [1]). There-
fore we can see that n = 2m = 2, 4, 8, 16. ¤

Our aim here is to prove the following ([17]):

Theorem 3. Let f be an isotropic immersion of an n(= 3)-dimensional connected
Riemannian manifold Mn into an (n + p)-dimensional real space form M̃n+p(c;R)
of curvature c. Suppose that p 5 (n+2)/2. Then M has parallel second fundamental
form, so that either f is totally umbilic or f is locally congruent to one of the first
standard minimal immersion of Mn into M̃n+p(c;R) :

(1) Mn = CP 2(4c/3), M̃n+p(c;R) = S7(c),

(2) Mn = HP 2(4c/3), M̃n+p(c;R) = S13(c),

(3) Mn = CayP 2(4c/3), M̃n+p(c;R) = S25(c),

where CP 2(4c/3), HP 2(4c/3) and CayP 2(4c/3) denote projective planes of max-
imal sectional curvature 4c/3 over the complex, quaternion and Cayley numbers,
respectively.

Proof. First we note that our manifold is totally umbilic in M̃n+p(c;R) in
the case of p < (n + 2)/2 (see Lemma 2). In the following, we consider
the case that p = (n + 2)/2 and f is not totally umbilic. Let U = {x ∈
M | x is an umbilic point of the isometric immersion f} and U c = M − U . Need-
less to say U c 6= φ. We shall show that U c = M and the second fundamental form
of f is parallel. We denote by R and S the curvature tensor and the Ricci tensor
of M , respectively. Then it follows from the following Gauss equation

〈σ(X, Y ), σ(Z, W )〉 − 〈σ(Z, Y ), σ(X,W )〉(4.1)
= 〈R(Z, X)Y, W 〉 − c(〈X,Y 〉〈Z,W 〉 − 〈Z, Y 〉〈X,W 〉)

that S(X,Y ) = (n− 1)(c + λ2)〈X,Y 〉 on U . On the other hand, by virtue of (4.1),
Lemma 1(3) and the fact that the immersion f is minimal on the open set U c (see the
statement (ii) in Lemma 2) we know that S(X,Y ) = {(n−1)c−(n+2)/2·λ2}〈X, Y 〉
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on U c. These, together with the hypothesis dim M = 3, imply that M is Einstein.
Hence M = U c. In addition, λ is constant so that

(4.2) 〈(∇̄Y σ)(X, X), σ(X, X)〉 = 0 for any X, Y.

Here the covariant differentiation ∇̄ of the second fundamental form σ with respect
to the connection in (tangent bundle)⊕(normal bundle) is defined as follows:

(∇̄Xσ)(Y,Z) = DX(σ(Y,Z))− σ(∇XY, Z)− σ(Y,∇XZ).

Similarly, from Lemma 1(3) we have

(4.3) 〈(∇̄Xσ)(X,X), σ(X,Y )〉+ 〈σ(X, X), (∇̄Xσ)(X, Y )〉 = 0 for any X,Y.

It follows from (4.2), (4.3) and the Codazzi equation (∇̄Xσ)(Y, Z) = (∇̄Y σ)(X,Z)
that 〈(∇̄Xσ)(X, X), σ(X, Y )〉 = 0 for all X, Y . We here recall the fact that the first
normal space N1 := {σ(X,Y )| X,Y ∈ TM}R of f spans the normal space of M at
its each point (see the proof of Lemma 2). Hence, (∇̄Xσ)(X, X) = 0 for any X, so
that ∇̄σ = 0. Therefore, by virtue of the works [8], [21] we can get the conclusion.
¤

5. Characterization of parallel immersions of rank one symmetric spaces
(I)

In this section, motivated by Theorem 3, we characterize parallel immersions
of every rank one symmetric space Mn into a real space form M̃n+p(c̃;R) by using
inequalities related to the codimension p. For this purpose we prepare the following
two lemmas:

Lemma 3 ([18]). Let f be a λ(> 0)-isotropic immersion of a Riemannian manifold
Mn into a Riemannian manifold M̃n+p. The discriminant ∆x at x ∈ M is defined
by ∆x = K(X,Y ) − K̃(X, Y ), where K(X, Y ) (resp. K̃(X,Y )) represents the sec-
tional curvature of the plane spanned by X, Y ∈ TxM for M (resp. M̃). Suppose
that the discriminant ∆x at x ∈ M is constant. Then the following inequalities hold
at x:

− n + 2
2(n− 1)

λ(x)2 5 ∆x 5 λ(x)2.

Moreover,

(i) ∆x = λ(x)2 ⇐⇒ f is umbilic at x ⇐⇒ dim N1
x = 1,

(ii) ∆x = −{(n + 2)/2(n− 1)}λ(x)2 ⇐⇒ f is minimal at x
⇐⇒ dim N1

x = (n(n + 1)/2)− 1,

(iii) −{(n + 2)/2(n− 1)}λ(x)2 < ∆x < λ(x)2 ⇐⇒ dim N1
x = n(n + 1)/2.
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Here, we denote by N1
x the first normal space at x, that is N1

x = SpanR{σ(X,Y ) :
X, Y ∈ TxM}.
Lemma 4. Let Mn be a constant λ-isotropic submanifold in a real space form
M̃n+p(c;R). Suppose that M is locally symmetric and the first normal space spans
the normal space at any point of M . Then second fundamental form of Mn in
M̃n+p(c;R) is parallel.

Proof. It follows from (3) in Lemma 1 and (4.1) that

〈σ(X, Y ), σ(Z,W )〉 = (1/3)(〈R(Z, X)Y,W 〉+ 〈R(Z, Y )X,W 〉)(5.1)
− (c/3)(2〈X, Y 〉〈Z,W 〉 − 〈Y,Z〉〈X, W 〉
− 〈Z, X〉〈Y, W 〉) + (λ2/3)(〈X,Y 〉〈Z,W 〉
+ 〈X, Z〉〈Y, W 〉+ 〈X, W 〉〉〈Y,Z〉).

Since λ is constant and M is locally symmetric, differentiating (5.1) with respect
to any tangent vector field T on M , we have

(5.2) 〈(∇̄T σ)(X, Y ), σ(Z,W )〉 = −〈σ(X, Y ), (∇̄T σ)(Z, W )〉.

By using (5.2) and the Codazzi equation (∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z) repeatedly,
we find

〈(∇̄T σ)(X, Y ), σ(Z, W )〉 = −〈σ(X, Y ), (∇̄Zσ)(T, W )〉
= 〈(∇̄Xσ)(Z, Y ), σ(T,W )〉 = −〈σ(Z, Y ), (∇̄W σ)(X, T )〉
= 〈(∇̄Y σ)(Z, W ), σ(X, T )〉 = −〈σ(Z, W ), (∇̄T σ)(X, Y )〉.

So we see that 〈(∇̄T σ)(X, Y ), σ(Z,W )〉 = 0, which, together with the hypothesis
that the first normal space spans the normal space at any point of M , shows that
the second fundamental form of our immersion is parallel. ¤

We first characterize parallel immersions of real space forms into real space
forms with low codimension ([2], [10]).

Theorem 4. Let f be a λ-isotropic immersion of an n(= 2)-dimensional real space
form Mn(c;R) into an (n + p)-dimensional space form M̃n+p(c̃;R). Suppose that

p 5 1
2
n(n + 1)− 1.

Then f is a parallel immersion and locally equivalent to one of the following:

(1) f is a totally umbilic immersion of Mn(c;R) into M̃n+p(c̃;R), where c = c̃
and p 5 (n(n + 1)/2)− 1,

(2) f is the second standard minimal immersion of Mn(c;R) = Sn(c) into
M̃n+p(c̃;R) = Sn+p(c̃), where c̃ = 2(n + 1)c/n and p = (n(n + 1)/2)− 1.
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Proof. First, we consider the case that f is a totally geodesic immersion. Then this
case is included in (1) of our Theorem.

Next, we investigate the case that f is not a totally geodesic immersion. Since
λ is a continuous function on Mn(c;R), we have only to study on the open dense
subset U(= {x ∈ Mn(c;R)|λ(x) > 0}) from now on. It follows from Lemma 3, the
assumption of our Theorem and the continuity of λ that the function λ is constant
on U , so that λ2 = c− c̃ or λ2 = 2(n− 1)(c̃− c)/(n + 2). In case of λ2 = c− c̃, this
case is included in (1) of our Theorem. In case of λ2 = 2(n−1)(c̃− c)/(n+2), from
Lemma 3 we know that dim N1

x = (n(n + 1)/2)− 1 for all x ∈ U . Hence by virtue
of Lemma 4 we can see that our immersion has parallel second fundamental form.
Therefore we get the case (2) of our Theorem (cf. [8], [21]). ¤

A complex n-dimensional complex space form Mn(c;C) is a Kähler manifold
of constant holomorphic sectional curvature c, which is locally congruent to either
a complex projective space CPn(c), a complex Euclidean space Cn(= R2n) or a
complex hyperbolic space CHn(c), according as c is positive, zero or negative.

The following lemma shows a necessary and sufficient condition that the iso-
metric immersion of a complex space form into a real space form has parallel second
fundamental form ([8], [9], [21]):

Lemma 5. Let M be a complex n-dimensional connected Kähler manifold with
complex structure J which is isometrically immersed into a real space form
M̃2n+p(c̃;R). Then the following two conditions are equivalent:

(i) The second fundamental form σ of M in M̃2n+p(c̃;R) is parallel,

(ii) σ(JX, JY ) = σ(X, Y ) for all X, Y ∈ TM .

We characterize parallel immersions of complex space forms into real space
forms with low codimension ([4], [12]).

Theorem 5. Let f be a λ-isotropic immersion of a complex space form Mn(4c;C)
(n = 2) of constant holomorphic sectional curvature 4c into a real space form
M̃2n+p(c̃;R) of constant sectional curvature c̃. If p 5 n2 + n − 2, then f is a
parallel immersion and locally equivalent to one of the following:

(1) f is a totally geodesic immersion of Cn(= R2n) into R2n+p, where p 5 n2 +
n− 2,

(2) f is a totally umbilic immersion of Cn(= R2n) into RH2n+p(c̃), where p 5
n2 + n− 2,

(3) is the first standard minimal immersion of CPn(4c) into S2n+p(c̃), where
p = n2 − 1 and c̃ = 2(n + 1)c/n,

(4) f is a parallel immersion defined by

f = f2 ◦ f1 : CPn(4c)
f1−→ Sn2+2n−1(2(n + 1)c/n)

f2−→ M̃2n+p(c̃;R),
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where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion, n2 5 p 5 n2 + n− 2 and 2(n + 1)c/n = c̃.

We need the following lemma in order to prove Theorem 5.

Lemma 6. The value of λ in our Theorem 5 is the following:
(1) λ = 0, (2) λ2 = −c̃; (3), (4) λ2 = 4c− c̃.

Proof. (1) and (2) are clear from Lemma 3. We shall consider the cases (3) and
(4). Let ι be a totally real totally geodesic immersion of a real projective space
RPn(c) into CPn(4c). We denote by f a λ-isotropic minimal immersion of CPn(4c)
into Sn2+2n−1(2(n + 1)c/n) (with parallel second fundamental form σ) and by J
the complex structure on CPn(4c). We choose a local field of orthonormal frames
{e1, · · · , en} on RPn(c). Then {e1, · · · , en, Je1, · · · , Jen} is a local field of orthonor-
mal frames on CPn(4c). Since RPn(c) is totally geodesic in CPn(4c), we can denote
by the same letter σ the second fundamental form of RPn(c) in the ambient space
Sn2+2n−1(2(n + 1)c/n) through f ◦ ι. We here remark that σ(ei, ei) = σ(Jei, Jei)
for 1 5 i 5 n (see Lemma 5). This, together with the fact that CPn(4c) is min-
imal in Sn2+2n−1(2(n + 1)c/n), implies that our manifold RPn(c) is minimal in
Sn2+2n−1(2(n + 1)c/n). Therefore, by virtue of our discussion, we know that f ◦ ι

is a λ-isotropic minimal immersion of RPn(c) into Sn2+2n−1(2(n + 1)c/n).
Using (ii) in Lemma 3, we can see that

λ2 = −2(n− 1)
n + 2

(
c− 2(n + 1)c

n

)

= 4c− 2(n + 1)c
n

= 4c− c̃.

Thus, we can check the case (3).
Let g be a totally umbilic immersion of Sn2+2n−1(2(n + 1)c/n) into

M̃2n+p(c̃;R). Then g is
√

2(n + 1)c/n− c̃-isotropic. Hence the above computation
yields that

λ2 =
(

4c− 2(n + 1)c
n

)
+

(
2(n + 1)c

n
− c̃

)

= 4c− c̃.

So we can check the case (4). ¤
We are now in a position to prove Theorem 5:

Proof of Theorem 5. Let J be the complex structure on Mn(4c;C). Then the
curvature tensor R of Mn(4c;C) is given by

R(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈JY, Z〉JX(5.3)
− 〈JX, Z〉JY + 2〈X,JY 〉JZ}
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for all vector fields X, Y and Z tangent to Mn(4c;C). It follows from (4.1) and
(5.3) that

〈σ(X, Y ), σ(Z,W )〉 =
λ2 + 2(c− c̃)

3
〈X, Y 〉〈Z,W 〉(5.4)

+
λ2 − (c− c̃)

3
{〈X, W 〉〈Y, Z〉+ 〈X,Z〉〈Y, W 〉}

+ c{〈JX, W 〉〈JY, Z〉+ 〈JX, Z〉〈JY, W 〉}

for all vector fields X, Y, Z and W tangent to Mn(4c;C).
We have only to consider the case that Mn(4c;C) is not totally geodesic in

M̃2n+p(c̃;R). We shall study on the open dense subset U(= {x ∈ Mn(4c;C)|λ(x) >
0}) from now on. Our discussion is divided into the two cases:

(i) λ2(x) 6= c− c̃,

(ii) λ2(x) = c− c̃.

(i) In the following, we study at an arbitrary fixed point x of U . Note that
λ2(x) 6= c− c̃. Now we investigate the first normal space N1

x at the point x by using
(5.4). We choose an orthonormal basis {e1, · · · , en, en+1 = Je1, · · · , e2n = Jen} of
TxMn(4c;C). Equation (5.3) shows that 〈R(ei, ej)ej , ei〉 = c for 1 5 i 6= j 5 n. So,
we may apply Lemma 3 to the linear subspace of TxMn(4c;C), which is generated
by {e1, · · · , en}. Thus either the case (ii) or the case (iii) of Lemma 3 must hold at
x.

Straightforward computation, by virtue of (5.4), yields the orthogonal relations.

(5.5) 〈σ(ei, Jej), σ(ek, Je`)〉 =
λ2 − (c− c̃)

3
· δikδj`

for 1 5 i < j 5 n and 1 5 k < ` 5 n.

(5.6) 〈σ(ei, ej), σ(ek, Je`)〉 = 0 for 1 5 i 5 j 5 n and 1 5 k < ` 5 n.

Then, in consideration of Lemma 3, (5.5) and (5.6), the codimension p satisfies

p = n(n + 1)/2− 1 + n(n− 1)/2 = n2 − 1

at the fixed point x. We note that x is not an umbilic point, since σ(ei, Jej) 6= 0
for 1 5 i < j 5 n. Here we take n vectors σ(ei, Jei) (i = 1, · · · , n).

Similar computation shows the following orthogonal relations.

(5.7) 〈σ(ei, Jei), σ(ej , Jej)〉 =
λ2 − (4c− c̃)

3
· δij for i, j = 1, · · · , n.

(5.8) 〈σ(ei, ej), σ(ek, Jek)〉 = 0 for 1 5 i 5 j 5 n and 1 5 k 5 n.
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(5.9) 〈σ(ei, Jej), σ(ek, Jek)〉 = 0 for 1 5 i < j 5 n and 1 5 k 5 n.

Now suppose that λ2 6= 4c− c̃. Then, in view of (5.7), (5.8) and (5.9), we find that
p = (n2 − 1) + n, which contradicts our assumption p 5 n2 + n− 2. And hence we
have

(5.10) λ2 = 4c− c̃.

Substituting (5.10) into the right-hand side of (5.4), we obtain

〈σ(X,Y ), σ(Z, W )〉(5.11)
= (2c− c̃)〈X,Y 〉〈Z, W 〉+ c{〈X,W 〉〈Y,Z〉

+ 〈X,Z〉〈Y, W 〉+ 〈JX,W 〉〈JY, Z〉+ 〈JX, Z〉〈JY,W 〉}
for all vector fields X, Y, Z and W tangent to Mn(4c;C).

Equation (5.11) implies the following.

〈σ(X, Y ), σ(X,Y )〉 = 〈σ(JX, JY ), σ(JX, JY )〉(5.12)

= (3c− c̃)〈X, Y 〉2 + c{‖X‖2‖Y ‖2 − 〈JX, Y 〉2}.
〈σ(X, Y ), σ(JX, JY )〉 = (3c− c̃)〈X, Y 〉2 + c{‖X‖2‖Y ‖2 − 〈JX, Y 〉2}.(5.13)

Thus, in view of (5.12) and (5.13), we can get σ(X, Y ) = σ(JX, JY ) for all X, Y .
And hence, from Lemma 5, we find that the second fundamental form of our im-
mersion is parallel on U . Therefore, due to the works of [8], [9], [21], there occurs
the case (3) and (4) of our Theorem 5.

(ii) Lastly, we consider the case of λ2(x0) = c− c̃. The above discussion asserts
that the continuous function λ on U is λ2 = 4c − c̃ or λ2 = c − c̃. And hence, we
have only to consider the case that λ2 = c− c̃ on U . Let ι be a totally real totally
geodesic immersion of a real space form Mn(c;R) into Mn(4c;C). It follows (i) of
Lemma 3 that our manifold (Mn(c;R), f ◦ ι) is totally umbilic in M̃2n+p(c̃;R).

Here, we take an arbitrary geodesic γ in Mn(4c;C). Since Mn(4c;C) is a
Euclidean space or a Riemannian symmetric space of rank one, we may think that
the curve γ is a geodesic in Mn(c;R). Hence the curve (f ◦ ι) ◦ γ is a circle in
M̃2n+p(c̃;R), so that the curve f ◦ γ is a circle in the ambient space M̃2n+p(c̃;R),
which implies that the immersion f has parallel second fundamental form (see [19]).
Thus we know that our immersion f is one of (2), (3) and (4) of our Theorem.
However there occurs only the case (2). In fact, in both of cases (3) and (4), we
know that λ2 = 4c− c̃ (see Lemma 6). On the other hand, in our case, λ2 = c− c̃.
This is a contradiction, because c > 0. Therefore, we can get the conclusion. ¤

A quaternionic n-dimensional quaternionic space form Mn(c;Q) is a quater-
nionic Kähler manifold of constant quaternionic sectional curvature c, which is
locally congruent to either a quaternionic projective space QPn(c), a quaternionic
Euclidean space Qn(= R4n) or a quaternionic hyperbolic space QHn(c), according
as c is positive, zero or negative.
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We next investigate isotropic immersions of quaternionic space forms into real
space forms with low codimension. Our aim here is to prove the following theorem
([4], [13]).

Theorem 6. Let f be a λ-isotropic immersion of a quaternionic space form
Mn(4c;Q) (n = 2) of constant quaternionic sectional curvature 4c into a real space
form M̃4n+p(c̃;R) of constant sectional curvature c̃. If p 5 2n2 + 2n− 2, then f is
a parallel immersion and locally equivalent to one of the following:

(1) f is a totally geodesic immersion of Qn(= R4n) into R4n+p, where p 5 2n2 +
2n− 2,

(2) f is a totally umbilic immersion of Qn(= R4n) into RH4n+p(c̃), where p 5
2n2 + 2n− 2,

(3) f is the first standard minimal immersion of QPn(4c) into S4n+p(c̃), where
p = 2n2 − n− 1 and c̃ = 2(n + 1)c/n,

(4) f is a parallel immersion defined by

f = f2 ◦ f1 : QPn(4c)
f1−→ S2n2+3n−1(2(n + 1)c/n)

f2−→ M̃4n+p(c̃;R),

where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion, 2n2 − n 5 p 5 2n2 + 2n− 2 and 2(n + 1)c/n = c̃.

Here, we prepare the following similar lemmas in order to prove Theorem 6.

Lemma 7 ([8], [13], [21]). Let M be a quaternionic n-dimensional connected
quaternionic Kähler manifold with canonical local basis {I, J,K} which is isomet-
rically immersed into a real space form M̃4n+p(c̃;R). Then the following two con-
ditions are equivalent:

(i) The second fundamental form σ of M in M̃4n+p(c̃;R) is parallel,

(ii) σ(IX, IY ) = σ(JX, JY ) = σ(KX, KY ) = σ(X, Y ) for all X, Y ∈ TM .

Lemma 8. The value of λ in our Theorem 6 is the following:
(1) λ = 0, (2) λ2 = −c̃; (3), (4) λ2 = 4c− c̃.

Proof. Let ι be a totally real totally geodesic immersion of a real projective space
RPn(c) into QPn(4c). The rest of the proof is similar to that of Lemma 6. ¤

Now we shall prove Theorem 6:

Proof of Theorem 6. Let {I, J, K} be the canonical local basis on Mn(4c;Q).
Then the curvature tensor R of Mn(4c;Q) is given by

R(X, Y )Z(5.14)
= c{〈Y, Z〉X − 〈X, Z〉Y + 〈IY, Z〉IX − 〈IX, Z〉IY

+〈JY, Z〉JX − 〈JX, Z〉JY + 〈KY, Z〉KX − 〈KX,Z〉KY

+2〈X, IY 〉IZ + 2〈X, JY 〉JZ + 2〈X,KY 〉KZ}
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for all vector fields X, Y and Z tangent to Mn(4c;Q).
It follows from (4.1) and (5.14) that

〈σ(X, Y ), σ(Z, W )〉(5.15)

=
λ2 + 2(c− c̃)

3
〈X, Y 〉〈Z, W 〉+

λ2 − (c− c̃)
3

{〈X, W 〉〈Y, Z〉+ 〈X, Z〉〈Y, W 〉}
+ c{〈IX,W 〉〈IY, Z〉+ 〈IX, Z〉〈IY, W 〉
+ 〈JX, W 〉〈JY, Z〉+ 〈JX, Z〉〈JY, W 〉
+ 〈KX,W 〉〈KY,Z〉+ 〈KX,Z〉〈KY,W 〉}

for all vector fields X, Y, Z and W tangent to Mn(4c;Q).
It suffices to study on the open dense subset U(= {x ∈ Mn(4c;Q)|λ(x) > 0}).

Our discussion is divided into the two cases: (i) λ2(x) 6= c− c̃, (ii) λ2(x) = c− c̃.
(i) In the following, we study at an arbitrary fixed point x of U . Note that

λ2(x) 6= c − c̃. Now we investigate the first normal space N1
x at the point x by

using (5.15). We choose an orthonormal basis {e1, · · · , en, en+1 = Ie1, · · · , e2n =
Ien, e2n+1 = Je1, · · · , e3n = Jen, e3n+1 = Ke1, · · · , e4n = Ken} of TxMn(4c;Q).
Equation (5.14) shows that 〈R(ei, ej)ej , ei〉 = c for 1 5 i 6= j 5 n. So, we may apply
Lemma 3 to the linear subspace of TxMn(4c;Q), which is generated by {e1, · · · , en}.
Thus either the case (ii) or the case (iii) of Lemma 3 must hold at x.

Straightforward computation, by virtue of (5.15), yields the orthogonal rela-
tions.

〈σ(ei, ej), σ(ek, Ie`)〉 = 〈σ(ei, ej), σ(ek, Je`)〉(5.16)
= 〈σ(ei, ej), σ(ek,Ke`)〉 = 0

for 1 5 i 5 j 5 n and 1 5 k < ` 5 n.

〈σ(ei, Iej), σ(ek, Je`)〉 = 〈σ(ei, Jej), σ(ek,Ke`)〉(5.17)
= 〈σ(ei,Kej), σ(ek, Ie`)〉 = 0

for 1 5 i < j 5 n and 1 5 k < ` 5 n.

〈σ(ei, Iej), σ(ek, Ie`)〉 = 〈σ(ei, Jej), σ(ek, Je`)〉(5.18)
= 〈σ(ei,Kej), σ(ek,Ke`)〉

=
λ2 − (c− c̃)

3
· δikδj`

for 1 5 i < j 5 n and 1 5 k < ` 5 n.

Then, in consideration of Lemma 3, (5.16), (5.17) and (5.18), the codimension p
satisfies

p = n(n + 1)/2− 1 + 3n(n− 1)/2 = 2n2 − n− 1
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at the fixed point x. We note that x is not an umbilic point, since σ(ei, Jej) 6= 0
for 1 5 i < j 5 n. Here we take 3n vectors σ(ei, Iei), σ(ei, Jei) and σ(ei,Kei)
(i = 1, · · · , n). Similar computation shows the following orthogonal relations.

〈σ(ei, ej), σ(ek, Iek)〉 = 〈σ(ei, ej), σ(ek, Jek)〉(5.19)
= 〈σ(ei, ej), σ(ek,Kek)〉 = 0

for 1 5 i 5 j 5 n and 1 5 k 5 n.

〈σ(ei, Iej), σ(ek, Iek)〉 = 〈σ(ei, Jej), σ(ek, Jek)〉(5.20)
= 〈σ(ei,Kej), σ(ek,Kek)〉 = 0

for 1 5 i < j 5 n and 1 5 k 5 n.

〈σ(ei, Iei), σ(ej , Jej)〉 = 〈σ(ei, Jei), σ(ej ,Kej)〉(5.21)
= 〈σ(ei,Kei), σ(ej , Iej)〉 = 0

for i, j = 1, · · · , n.

〈σ(ei, Iei), σ(ej , Jek)〉 = 〈σ(ei, Iei), σ(ej ,Kek)〉(5.22)
= 〈σ(ei, Jei), σ(ej , Iek)〉 = 〈σ(ei, Jei), σ(ej ,Kek)〉
= 〈σ(ei,Kei), σ(ej , Iek)〉 = 〈σ(ei,Kei), σ(ej , Jek)〉 = 0

for 1 5 i 5 n and 1 5 j < k 5 n.

〈σ(ei, Iei), σ(ej , Iej)〉 = 〈σ(ei, Jei), σ(ej , Jej)〉(5.23)

= 〈σ(ei,Kei), σ(ej , Kej)〉 =
λ2 − (4c− c̃)

3
· δij

for i, j = 1, · · · , n.

Now suppose that λ2 6= 4c − c̃. Then, in view of (5.19), (5.20), (5.21), (5.22) and
(5.23), we find that p = (2n2 − n− 1) + 3n = 2n2 + 2n− 1, which contradicts our
assumption p 5 2n2 + 2n− 2. And hence we have

(5.24) λ2 = 4c− c̃.

Substituting (5.24) into the right-hand side of (5.15), we obtain

〈σ(X, Y ), σ(Z, W )〉 = (2c− c̃)〈X, Y 〉〈Z,W 〉(5.25)
+c{〈X,W 〉〈Y, Z〉+ 〈X, Z〉〈Y, W 〉
+〈IX, W 〉〈IY, Z〉+ 〈IX,Z〉〈IY,W 〉
+〈JX,W 〉〈JY, Z〉+ 〈JX, Z〉〈JY,W 〉
+〈KX, W 〉〈KY, Z〉+ 〈KX, Z〉〈KY, W 〉}

for all vector fields X, Y, Z and W tangent to Mn(4c;Q).
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Equation (5.25) implies the following.

〈σ(X,Y ), σ(X, Y )〉 = 〈σ(IX, IY ), σ(IX, IY )〉(5.26)
= 〈σ(JX, JY ), σ(JX, JY )〉 = 〈σ(KX, KY ), σ(KX, KY )〉
= (3c− c̃)〈X, Y 〉2 + c{‖X‖2‖Y ‖2 − 〈IX, Y 〉2 − 〈JX, Y 〉2 − 〈KX,Y 〉2}.

〈σ(X, Y ), σ(IX, IY )〉 = 〈σ(X,Y ), σ(JX, JY )〉 = 〈σ(X,Y ), σ(KX, KY )〉(5.27)

= (3c− c̃)〈X,Y 〉2 + c{‖X‖2‖Y ‖2 − 〈IX, Y 〉2 − 〈JX, Y 〉2 − 〈KX, Y 〉2}.
Thus, in consideration of (5.26) and (5.27), we can get σ(X, Y ) = σ(IX, IY ) =
σ(JX, JY ) = σ(KX, KY ) for all X, Y . And hence, from Lemma 7, we find that
the second fundamental form of our immersion is parallel on U . Therefore there
occurs the case (3) and (4).

(ii) Lastly, we consider the case of λ2(x) = c− c̃. ¿From Lemma 6 and the same
discussion as in the proof of Theorem 5, we can get the conclusion. ¤

Here we denote the Cayley numbers by Cay, which is an 8-dimensional non-
associative division algebra over the real numbers. It has a multiplicative identity
and a positive definite symmetric bilinear form 〈 , 〉. The tangent space of Cayley
projective plane CayP 2(c) of maximal sectional curvature c may be identified with
V = Cay⊕Cay. The vector space V has a positive definite symmetric bilinear form
〈 , 〉 given by 〈(a, c), (b, d)〉 = 〈a, b〉+ 〈c, d〉. The curvature tensor R of CayP 2(c) is
given by

〈R((a, b), (c, d))(e, f), (g, h)〉(5.28)

=
c

4

(
4〈c, e〉〈a, g〉 − 4〈a, e〉〈c, g〉+ 〈ed, gb〉 − 〈eb, gd〉

+〈ad− cb, gf〉+ 〈cf, ah〉 − 〈af, ch〉 − 4〈b, f〉〈d, h〉
+4〈d, f〉〈b, h〉 − 〈ad− cb, eh〉

)
,

where c is a positive constant (for details, see [7]). CayH2(c) of minimal sectional
curvature c(< 0) is the noncompact dual of CayP 2(|c|).

The following gives a characterization of parallel immersions of the Cayley pro-
jective plane into a real space form with low codimension ([16]):

Theorem 7. We denote by M a connected open submanifold of either the Cayley
projective plane or its noncompact dual. Let f be a λ-isotropic immersion of M
into a real space form M̃16+p(c̃;R). If p 5 10, then f is a parallel immersion and
locally equivalent to one of the following:

(1) f is the first standard minimal immersion of CayP 2(c) into S25(c̃), where
c = 4c̃/3 and p = 9,

(2) f is a parallel immersion defined by

f = f2 ◦ f1 : CayP 2(c)
f1−→ S25(3c/4)

f2−→ M̃26(c̃ : R),
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where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion, (3c/4) = c̃ and p = 10.

Proof. We immediately find from (5.28) that

K((a, 0), (b, 0)) = 〈R((a, 0), (b, 0))(b, 0), (a, 0)〉 = c if (a, 0) ∧ (b, 0) 6= 0.

So we may apply to the linear subspace Cay⊕{0} of TxM . Then Lemma 3 asserts
that

(5.29) λ2 = c− c̃,

since p < 35 = (8× 9)/2− 1. It follows from (5.1), (5.28) and (5.29) that

〈σ((a, b), (c, d)), σ((e, f), (g, h))〉(5.30)
= (c− c̃)(〈a, c〉〈e, g〉+ 〈b, d〉〈f, h〉)− c̃(〈b, d〉〈e, g〉+ 〈a, c〉〈f, h〉)

+
c

3
{〈b, d〉〈e, g〉+ 〈a, c〉〈f, h〉+ 〈a, g〉〈d, f〉

+〈b, h〉〈c, e〉+ 〈b, f〉〈c, g〉+ 〈a, e〉〈d, h〉}
+

c

12
{〈cb, eh〉+ 〈ah, cf〉+ 〈ad, gf〉+ 〈ed, gb〉+ 〈cb, gf〉+ 〈af, ch〉

+〈ad, eh〉+ 〈eb, gd〉 − 2〈ch, eb〉 − 2〈af, gd〉 − 2〈cf, gb〉 − 2〈ah, ed〉}.

For simplicity, we put Xi = (ei, 0) and Yi = (0, ei) for 0 5 i 5 7, where
{e0 = 1, e1, · · · , e7} is a basis of Cay. By using (5.30), we see that the vectors
σ(X0, X0), σ(X0, Y0), σ(X0, Y1), · · · , σ(X0, Y7) are nonzero and mutually orthogo-
nal. Then we have dim N1

x = 9 for all x ∈ M . We shall prove in the following that
f has parallel second fundamental form.

Case (I): p 5 9. Note that the first normal space coincides with the normal
space at each point of M . This, combined with the fact that λ is constant, implies
that f has parallel second fundamental form (cf. Lemma 4). Therefore we see
that M is locally congruent to a connected open submanifold of CayP 2(c) and the
immersion is locally equivalent to the first standard minimal immersion (see [8],
[21]).

Case (II): p = 10. Our discussion is divided into the following two subcases:
Case (II a): σ(X0, X0) and σ(Y0, Y0) are linearly independent at the fixed

point x ∈ M . So there exists a sufficiently small neighborhood U such that these
two vectors are linearly independent at each point of U . We see from (5.30) that
σ(Y0, Y0), σ(X0, Y0), σ(X0, Y1), · · · , σ(X0, Y7) are mutually orthogonal nonzero vec-
tors so that dim N1

x = 10 for each x ∈ U . Therefore the same argument as in
case (I) asserts that the manifold M is a parallel submanifold. Hence, we find
that M is locally congruent to a connected open submanifold of CayP 2(c) which
is immersed into some totally umbilic (but not totally geodesic) hypersurface of
M̃26(c̃;R) through the first standard minimal immersion.
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Case (II b): σ(X0, X0) and σ(Y0, Y0) are linearly dependent at the fixed point
x ∈ M . We have

|〈σ(X0, X0), σ(Y0, Y0)〉| = ‖σ(X0, X0)‖‖σ(Y0, Y0)‖

which, together with (5.30), implies that |(c/2) − c̃| = |c − c̃| so that c = 4c̃/3.
Substituting c = 4c̃/3 into (5.30), we get an equation, say, (5.30)’, which implies
that our immersion is minimal. We note that our immersion is minimal on some
sufficiently small neighborhood of the point x, because in Case (II a) our immersion
has nonzero constant mean curvature H =

√
(3c/4)− c̃.

On the other hand, the first standard minimal immersion f of CayP 2(c) into
S25(3c/4) is a parallel immersion. Moreover, the immersion f also satisfies (5.30)’.

We here recall the following which is so-called Simons equation ([20]):

(1/2)∆‖σ‖2 = ‖∇̄σ‖2 − 2
∑

(hα
ijh

α
jkhβ

klh
β
`i − hα

ijh
β
jkhα

k`h
β
`i)(5.31)

−
∑

hα
ijh

β
ijh

α
k`h

β
k` + nc̃‖σ‖2,

where σ is the second fundamental form of a minimal submanifold Mn of a real
space form M̃n+p(c̃;R), hα

ij denote the components of σ with respect to a local field
of orthonormal frames and ∆ denotes the Laplacian.

The above discussion in Case (II b), together with (5.31), implies that the
immersion in our case has parallel second fundamental form. Hence we can see
that M is locally congruent to a connected open submanifold of CayP 2(c) which
is immersed into some totally geodesic hypersurface of S26(3c/4) through the first
standard minimal immersion (see [8], [21]). ¤

Remark. Let f be the first standard minimal immersion of CayP 2(c) into
S25(3c/4). we see from (5.30)’ that (2/

√
c)σ(X0, X0), (2/

√
c)σ(X0, Y0), (2/

√
c),

σ(X0, Y1), · · · , σ(X0, Y7) is an orthonormal basis for the first normal space of f .
Moreover, again by using (5.30)’ we are able to investigate the first normal space
of f in detail. Direct computation yields the following: For simplicity, we put
1© = σ(X0, X0), 2© = σ(X0, Y0), 3© = σ(X0, Y1), · · · , 9© = σ(X0, Y7).

Let σ =
(

(σ(Xi, Xj)) (σ(Xi, Yj))
(σ(Yi, Xj)) (σ(Yi, Yj))

)

05i,j57.

Then

(σ(Xi, Xj))05i,j57 = −(σ(Yi, Yj))05i,j57 =




1© 0 · · · 0
0 1© · · · 0
...

...
. . .

...
0 0 · · · 1©



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and

(σ(Xi, Yj))05i,j57 =




2© 3© 4© 5© 6© 7© 8© 9©
3© − 2© 5© − 4© 7© − 6© − 9© 8©
4© − 5© − 2© 3© 8© 9© − 6© − 7©
5© 4© − 3© − 2© 9© − 8© 7© − 6©
6© − 7© − 8© − 9© − 2© 3© 4© 5©
7© 6© − 9© 8© − 3© − 2© − 5© 4©
8© 9© 6© − 7© − 4© 5© − 2© − 3©
9© − 8© 7© 6© − 5© − 4© 3© − 2©




.

We here note that the above matrix (σ(Xi, Yj))05i,j57 coincides with the table of
the Cayley numbers.

6. Characterization of parallel immersions of rank one symmetric spaces
(II)

In this section, we study parallel immersions of every rank one symmetric space
Mn into a real space form M̃n+p(c̃;R) from another point of view. We characterize
these parallel immersions by using inequalities related to mean curvatures H.

We first prove the following ([3]):

Theorem 8. Let f be an isotropic immersion of an n(= 2)-dimensional compact
oriented real space form Mn(c;R) of curvature c into an (n + p)-dimensional space
form M̃n+p(c̃;R) of curvature c̃. Let ∆ denote the Laplacian on Mn(c;R). Suppose
that

(i) H2 5 2(n+1)
n c− c̃,

(ii) 0 5 (1− n)∆H2 + n〈h, ∆h〉.
Then Mn(c;R) is a parallel submanifold of M̃n+p(c̃;R) and f is locally equivalent
to one of the following.

(1) f is a totally umbilic immersion of Mn(c;R) into M̃n+p(c̃;R), c = c̃. Here
H2 ≡ c− c̃.

(2) f = f2 ◦ f1 : Sn(c)
f1−→ Sn+

n(n+1)
2 −1

(
2(n+1)

n c
)

f2−→ M̃n+p(c̃;R),
where f1 is the second standard minimal immersion, f2 is a totally umbilic
immersion and 2(n+1)

n c = c̃. Here H2 ≡ 2(n+1)
n c− c̃.

Proof. We first generalize Simons equation (5.31) for every Riemannian submanifold
Mn of M̃n+p(c̃;R) as follows:

1
2
∆‖σ‖2 = ‖∇̄σ‖2 − c̃n2H2 + c̃n‖σ‖2(6.1)

+
n∑

i,j,k=1

〈Dei

(
Dej

(
σ(ek, ek)

))
, σ(ei, ej)〉
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+
n∑

i,j,k,`=1

[
2〈σ(ek, ej), σ(ei, e`)〉〈σ(el, ek), σ(ei, ej)〉

− 2〈σ(ek, ej), σ(ek, el)〉〈σ(el, ei), σ(ei, ej)〉
+ 〈σ(ek, ek), σ(ei, el)〉〈σ(el, ej), σ(ei, ej)〉
− 〈σ(ei, ej), σ(el, ek)〉〈σ(el, ek), σ(ei, ej)〉

]
.

In the following we study a λ-isotropic immersion f : Mn(c;R) → M̃n+p(c̃;R). Our
computation shows that the second fundamental form of the immersion f satisfies

〈σ(X,Y ), σ(Z, W )〉 =
c− c̃

3
(
2〈X, Y 〉〈Z, W 〉 − 〈X, Z〉〈Y, W 〉(6.2)

− 〈X,W 〉〈Y, Z〉) +
λ2

3
(〈X, Y 〉〈Z, W 〉

+ 〈X,Z〉〈Y,W 〉+ 〈X, W 〉〈Y, Z〉),

where X, Y, Z and W are vector fields tangent to Mn(c;R).
Equation (6.2) yields the following:

(6.3) 3‖σ(X,Y )‖2 + c− c̃ = λ2,

where X and Y are orthonormal vector fields tangent to Mn(c;R).

(6.4) H2 =
2(n− 1)(c− c̃) + λ2(n + 2)

3n
.

(6.5) ‖σ‖2 = n2H2 − n(n− 1)(c− c̃).

Here we compute the fourth term of the right-hand side of (6.1). In order to compute
this term easily without loss of generality we use the condition that ∇ei = 0 at the
point x, i ∈ {1, · · · , n}. It follows from the Codazzi equation (∇̄Xσ)(Y, Z) =
(∇̄Y σ)(X,Z), (6.2) and (6.4) that

n∑

i,j,k=1

〈Dei

(
Dej

(
σ(ek, ek)

))
, σ(ei, ej)〉

=
n∑

i,j,k=1

[
ei

(
〈Dej

(
σ(ek, ek)

)
, σ(ei, ej)〉

)
− 〈Dej

(
σ(ek, ek)

)
, Dei

(
σ(ei, ej)

)〉
]

=
n∑

i,j,k=1

[
ei

(
ej

(〈σ(ek, ek), σ(ei, ej)〉
))− ei

(
〈σ(ek, ek), Dej

(
σ(ei, ej)

)〉
)

− 〈Dej

(
σ(ek, ek)

)
, Dej

(
σ(ei, ei)

)〉
]
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=
n∑

i,j,k=1

[
ei

(
ej

(〈σ(ek, ek), σ(ei, ej)〉
))− 〈σ(ek, ek), Dei

(
Dei

(
σ(ej , ej)

))
〉

− 2〈Dej

(
σ(ek, ek)

)
, Dej

(
σ(ei, ei)

)〉
]

=
n∑

i,j,k=1

[
ei

(
ej

[c− c̃

3
(2δij − 2δkiδkj) +

3nH2 − 2(n− 1)(c− c̃)
3(n + 2)

(δij + 2δkiδkj)
])

− 〈σ(ek, ek), Dei

(
Dei

(
σ(ej , ej)

))
〉 − 2〈Dej

(
σ(ek, ek)

)
, Dej

(
σ(ei, ei)

)〉
]

= n∆H2 − n2〈h, ∆h〉 − 2n2‖Dh‖2
= n∆H2 + n2〈h, ∆h〉 − n2(2‖Dh‖2 + 2〈h, ∆h〉)
= n(1− n)∆H2 + n2〈h,∆h〉,

so that

(6.6)
n∑

i,j,k=1

〈Dei

(
Dej

(
σ(ek, ek)

))
, σ(ei, ej)〉 = n(1− n)∆H2 + n2〈h,∆h〉.

Using (6.1), (6.2), (6.4), (6.5) and (6.6), we obtain the following equation:

1
2
∆‖σ‖2 = ‖∇̄σ‖2 − n3(n− 1)

n + 2

(
H2 − c + c̃

)(
H2 − 2(n + 1)

n
c + c̃

)

+ n

(
(1− n)∆H2 + n〈h,∆h〉

)
.

Here it follows from (6.3) and (6.4) that

H2 − c + c̃ =
n + 2

n
(λ2 − c + c̃) =

n + 2
n

‖σ(X,Y )‖2 = 0

for each orthonormal pair of vectors X and Y .
This, together with the inequalities (i), (ii) in the assumption of Theorem 8 and

a well-known Hopf’s lemma, implies that ∇̄σ = 0. Moreover we have H2 ≡ c− c̃ or
H2 ≡ 2(n+1)

n c− c̃. Therefore we get the conclusion. ¤

Remarks 1.

(I) We comment on the inequality (ii): 0 5 (1 − n)∆H2 + n〈h,∆h〉. By easy
computation we know that this inequality means that the mean curvature
vector h is parallel when the mean curvature H is constant.
In fact, when H is constant, from this inequality we see that 0 5 〈h,∆h〉.
Again, by using the condition that H is constant, we get ‖Dh‖2 = −〈h,∆h〉.
It follows from these two inequalities that Dh = 0.

(II) As an immediate consequence of Theorem 8 we obtain the following:
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Corollary. Let f be an isotropic immersion of an n(= 2)-dimensional compact
oriented real space form Mn(c;R) into an (n + p)-dimensional real space form
M̃n+p(c̃;R). Suppose that
(i) H2 5 2(n+1)

n c− c̃,
(ii) ′ the mean curvature vector h of f is parallel.

Then Mn(c;R) is a parallel submanifold of M̃n+p(c̃;R) and f is locally equivalent
to one of the following.

(1) f is a totally umbilic immersion of Mn(c;R) into M̃n+p(c̃;R), c = c̃. Here
H2 ≡ c− c̃.

(2) f = f2 ◦ f1 : Sn(c)
f1−→ Sn+

n(n+1)
2 −1

(
2(n+1)

n c
)

f2−→ M̃n+p(c̃;R),
where f1 is the second standard minimal immersion, f2 is a totally umbilic
immersion and 2(n+1)

n c = c̃. Here H2 ≡ 2(n+1)
n c− c̃.

(III) We show that Theorem 8 is no longer true if we omit the condition (ii) in
the hypothesis of Theorem 8. We recall the following example([14]):

Example. Let χ1 : Sn
(
n/

(
2(n+1)

)) → Sn+(n(n+1)/2)−1(1) be the second standard
minimal immersion and χ2 : Sn

(
n/

(
2(n + 1)

)) → Sn
(
n/

(
2(n + 1)

))
the identity

mapping. Using these minimal immersions, for t ∈ (0, π/2) we define the following
minimal immersion
(6.7)

χt(= (χ1, χ2)) : Sn
( n

2(n + 1)

)
→ Sn+

n(n+1)
2 −1

( 1
cos2t

)
× Sn

( n

2(n + 1)sin2t

)
.

Here the differential mapping (χt)∗ of χt is given by (χt)∗X = (cos t · (χ1)∗X, sin t ·
(χ2)∗X) for each X ∈ TSn

(
n/

(
2(n + 1)

))
. The product space of spheres in (6.7)

can be imbedded into a sphere as a Clifford hypersurface:

(6.8) Sn+
n(n+1)

2 −1
( 1

cos2t

)
× Sn

( n

2(n + 1)sin2t

)
→ Sn+

n(n+3)
2

( n

n + (n + 2)sin2t

)
.

Combining (6.7) with (6.8), we obtain the following isometric immersion ft:

(6.9) ft : Sn
( n

2(n + 1)

)
→ Sn+

n(n+3)
2

( n

n + (n + 2)sin2t

)
.

By virtue of the result in [14] we obtain the following properties of ft for each
t ∈ (0, π/2).

(a) The mean curvature Ht of ft is given by

Ht = ‖ht‖ =
(n + 2) sin t cos t√

2(n + 1)(n + (n + 2)sin2t)
6= 0.
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(b) The mean curvature vector ht of ft is not parallel. The length of the derivative
of ht is given by:

‖Dht‖2 =
n(n + 2)2

4(n + 1)2
sin2tcos2t 6= 0.

(c) ft is constant λt-isotropic. λt is given by

λt =

√
cos4t

n− 1
n + 1

+
(c̃1cos2t− c̃2sin2t)2

c̃1 + c̃2
6= 0,

where c̃1 = 1
cos2t and c̃2 = n

2(n+1)sin2t
.

Now, in particular we set cos t = 1/
√

n + 1 and sin t =
√

n/(n + 1). Then we
have the following isometric immersion f :

(6.10) f : Sn
( n

2(n + 1)

)
→ Sn+

n(n+1)
2 −1(n + 1)× Sn

(1
2

)
→ Sn+

n(n+3)
2

( n + 1
2n + 3

)
.

We shall show that the isometric immersion f given by (6.10) satisfies the inequality
(i) but not the inequality (ii) in the statement of Theorem 8.

In fact, we have

(i) H2 − 2(n + 1)
n

c + c̃ =
(n + 2)2

2(2n + 3)(n + 1)2
− 1 +

n + 1
2n + 3

= − n(n + 2)
2(n + 1)2

< 0,

(ii) (1− n)∆H2 + n〈h, ∆h〉 = n〈h, ∆h〉

= −n‖Dh‖2 = −n3(n + 2)2

4(n + 1)4
< 0.

This shows that Theorem 8 does not hold without the inequality (ii).

We next prove the following ([5]):

Theorem 9. Let f be a λ-isotropic immersion of a complex n(= 2)-dimensional
complex space form Mn(4c;C) of constant holomorphic sectional curvature 4c into
a (2n + p)-dimensional real space form M̃2n+p(c̃;R) of constant sectional curvature
c̃. Suppose that H2 5 2(n + 1)c/n− c̃.
Then the immersion f is a parallel immersion and locally equivalent to one of the
following:

(1) f is a totally geodesic immersion of Cn(= R2n) into R2n+p, where H ≡ 0,

(2) f is a totally umbilic immersion of Cn(= R2n) into RH2n+p(c̃), where H2 ≡
−c̃,
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(3) f = f2 ◦ f1 : CPn(4c)
f1−→ Sn2+2n−1(2(n + 1)c/n)

f2−→ M̃2n+p(c̃;R),
where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion, H2 ≡ (2(n + 1)c/n)− c̃ and 2(n + 1)c/n = c̃.

Proof. Equation (5.4) yields the following.

(6.11) H2 =
(n + 1)λ2 + 2(n + 1)c− (2n− 1)c̃

3n
.

(6.12) ‖σ(X, JX)‖2 =
λ2 − 4c + c̃

3
,

where X is an arbitrary unit vector field tangent to Mn(4c;C).
It follows from (6.11) and (6.12) that

H2 − 2(n + 1)
n

c + c̃ =
n + 1

n
‖σ(X,JX)‖2 = 0,

where X is an arbitrary unit vector field tangent to Mn(4c;C).
Therefore, by hypothesis we can find H2 ≡ 2(n+1)

n c − c̃ and get the following
equation

(6.13) σ(X, JX) = 0 for each X.

Equation (6.13) is equivalent to the condition (ii) in Lemma 5. Thus we can get
the conclusion. ¤

Remark. It is interesting to compare Theorem 8 with Theorem 9. Note that the
statement of Theorem 9 is a local version. Moreover, the assumption of Theorem 9
does not need an inequality like the condition (ii) in Theorem 8.

The following is similar to Theorem 9 ([5]):

Theorem 10. Let f be a λ-isotropic immersion of a quaternionic n(= 2)- di-
mensional quaternionic space form Mn(4c;Q) of constant quaternionic sectional
curvature 4c into a (4n + p)-dimensional real space form M̃4n+p(c̃;R) of constant
sectional curvature c̃. Suppose that H2 5 2(n + 1)c/n− c̃.
Then the immersion f is a parallel immersion and locally equivalent to one of the
following:

(1) f is a totally geodesic immersion of Qn(= R4n) into R4n+p, where H ≡ 0,

(2) f is a totally umbilic immersion of Qn(= R4n) into RH4n+p(c̃), where H2 ≡
−c̃,

(3) f = f2 ◦ f1 : QPn(4c)
f1−→ S2n2+3n−1(2(n + 1)c/n)

f2−→ M̃4n+p(c̃;R),
where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion, H2 ≡ (2(n + 1)c/n)− c̃ and 2(n + 1)c/n = c̃.
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Proof. Equation (5.15) yields the following.

(6.14) H2 =
(2n + 1)λ2 + 4(n + 2)c− (4n− 1)c̃

6n
.

(6.15) ‖σ(X, IX)‖2 = ‖σ(X,JX)‖2 = ‖σ(X, KX)‖2 =
λ2 − 4c + c̃

3
,

where X is an arbitrary unit vector field tangent to Mn(4c;Q).
It follows from (6.14) and (6.15) that

H2 − 2(n + 1)
n

c + c̃ =
2n + 1

2n
‖σ(X, IX)‖2

=
2n + 1

2n
‖σ(X,JX)‖2 =

2n + 1
2n

‖σ(X, KX)‖2 = 0,

where X is an arbitrary unit vector field tangent to Mn(4c;Q).
Therefore, by hypothesis we can find H2 ≡ 2(n+1)

n c − c̃ and get the following
equation

(6.16) σ(X, IX) = σ(X,JX) = σ(X, KX) = 0 for each X.

Equation (6.16) is equivalent to the condition (ii) in Lemma 7. Therefore we can
get the desirable result. ¤

Finally we prove the following ([6]):

Theorem 11. Let f be a λ-isotropic immersion of CayP 2(c) of maximal sectional
curvature c into M̃m(c̃;R) of constant sectional curvature c̃. Suppose that

(i) 8H2 5 9c− 8c̃,

(ii) 0 5 16〈h, ∆h〉 − 15∆H2, where ∆ denotes the Laplacian on CayP 2(c).

Then CayP 2(c) is a parallel submanifold of M̃m(c̃) and the immersion f is decom-
posed as:

f = f2 ◦ f1 : CayP 2(c)
f1−→ S25(3c/4)

f2−→ M̃m(c̃;R),

where f1 is the first standard minimal immersion, f2 is a totally umbilic immersion
and 3c/4 = c̃. Moreover, the mean curvature H of f is expressed as: 8H2 ≡
6c− 8c̃(< 9c− 8c̃).

Proof. For the sake of simplicity, we put Ei = (ei, 0) and E8+i = (0, ei) for i =
1, · · · , 8, where {e1 = 1, e2, · · · , e8} is a basis of Cay.

Equation (5.30) yields the following.

(6.17) ‖σ‖2 = −48c + 96λ2 + 80c̃.

(6.18) 8H2 = 3c + 3λ2 − 5c̃.
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(6.19) 4H2 − 3c + 4c̃ =
9
2
‖σ(E1, E2)‖2(= 0).

Here we compute the fourth term of the right-hand side in (6.1). In order
to compute this term easily we use again the condition that ∇Ek = 0 at the
point x, k ∈ {1, · · · , 16}, where we choose a local field of orthonormal frames
{E1, · · · , E8, E9, · · · , E16} on CayP 2(c). It follows from the Codazzi equation
(∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z), (5.30) and (6.18) that

16∑

i,j,k=1

〈DEi

(
DEj

(
σ(Ek, Ek)

))
, σ(Ei, Ej)〉

=
16∑

i,j,k=1

[
Ei

(
〈DEj

(
σ(Ek, Ek)

)
, σ(Ei, Ej)〉

)
− 〈DEj

(
σ(Ek, Ek)

)
, DEi

(
σ(Ei, Ej)

)〉
]

=
16∑

i,j,k=1

[
Ei

(
Ej

(〈σ(Ek, Ek), σ(Ei, Ej)〉
))− Ei

(
〈σ(Ek, Ek), DEj

(
σ(Ei, Ej)

)〉
)

− 〈DEj

(
σ(Ek, Ek)

)
, DEj

(
σ(Ei, Ei)

)〉
]

=
16∑

i,j,k=1

[
Ei

(
Ej

(〈σ(Ek, Ek), σ(Ei, Ej)〉
))− 〈σ(Ek, Ek), DEi

(
DEi

(
σ(Ej , Ej)

))
〉

− 2〈DEj

(
σ(Ek, Ek)

)
, DEj

(
σ(Ei, Ei)

)〉
]

=
16∑

i,j=1

Ei

(
Ej

(
(6c + 6λ2 − 10c̃)δij

))− (16)2〈h, ∆h〉 − 2(16)2‖Dh‖2

= 16∆H2 − (16)2〈h,∆h〉 − (16)2(∆H2 − 2〈h, ∆h〉)
= 16(16〈h, ∆h〉 − 15∆H2).

Therefore, we can get the following equation

(6.20)
16∑

i,j,k=1

〈DEi

(
DEj

(
σ(Ek, Ek)

))
, σ(Ei, Ej)〉 = 16

(
16〈h, ∆h〉 − 15∆H2

)
.

Using (5.30), (6.1), (6.17), (6.18) and (6.20), we obtain the following equation:

1
2
∆‖σ‖2 = ‖∇̄σ‖2 + 16

(
16〈h,∆h〉 − 15∆H2

)

− 320
3

(
4H2 − 3c + 4c̃

)(
8H2 − 9c + 8c̃

)
.

This, together with (6.19), the assumption of our Theorem and a well-known Hopf’s
lemma, implies that ∇̄σ = 0. Therefore we obtain the conclusion, so that the mean
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curvature H of our immersion f satisfies H2 = (3c/4) − c̃. We here remark that
8H2 − 9c + 8c̃ = −3c < 0. ¤

Remarks 2.

(I) By the same reason as in (I) of Remarks 1 we see that the inequality (ii) in
Theorem 11 implies that the mean curvature vector h is parallel when the
mean curvature H is constant.

(II) As an immediate consequence of Theorem 11 we have the following:

Corollary. Let f be a λ-isotropic immersion of CayP 2(c) of maximal sectional
curvature c into M̃m(c̃;R) of constant sectional curvature c̃. Suppose that

(i) 8H2 5 9c− 8c̃,

(ii) ′ the mean curvature vector h of f is parallel.

Then CayP 2(c) is a parallel submanifold of M̃m(c̃) and the immersion f is decom-
posed as:

f = f2 ◦ f1 : CayP 2(c)
f1−→ S25(3c/4)

f2−→ M̃m(c̃;R),

where f1 is the first standard minimal immersion, f2 is a totally umbilic immersion
and 3c/4 = c̃. Moreover, the mean curvature H of f is expressed as: 8H2 ≡
6c− 8c̃(< 9c− 8c̃).

(III) Theorem 11 is not true without the condition (ii) in the hypothesis of Theorem
11. We recall the following example similar to that of Remarks 1.

Example. Let χ1 : CayP 2(c) → S25(3c/4) be the first standard minimal immer-
sion and χ2 : CayP 2(c) → S323(13c/8) the second standard minimal immersion.
Using these minimal immersions, for t ∈ (0, π/2) we define the following minimal
immersion

(6.21) χt(= (χ1, χ2)) : CayP 2(c) → S25
( 3c

4 cos2 t

)
× S323

( 13c

8 sin2 t

)
.

The product of spheres in (6.21) can be imbedded into a sphere as a Clifford hy-
persurface:

(6.22) S25
( 3c

4 cos2 t

)
× S323

( 13c

8 sin2 t

)
→ S349

( 39c

4(6 sin2 t + 13 cos2 t)

)
.

Combining (6.21) with (6.22), we obtain the following isometric immersion ft:

ft : CayP 2(c) → S349
( 39c

4(6 sin2 t + 13 cos2 t)

)
.
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Then we obtain the following properties of ft for each t ∈ (0, π/2).
(a) The mean curvature Ht of ft is given by

Ht = ‖ht‖ =
7 cos t sin t

√
c√

8(6 sin2 t + 13 cos2 t)
> 0.

(b) The mean curvature vector ht of ft is not parallel. The length of the deriva-
tive of ht is given by

‖Dht‖2 =
49
4

c2 sin2 t cos2 t > 0.

(c) ft is constant λt-isotropic. λt is given by

λt =

√
c

4
cos4 t +

41c

24
sin4 t +

49c cos2 t sin2 t

8(6 sin2 t + 13 cos2 t)
> 0.

Now, in particular we set cos t =
√

10/11 and sin t =
√

1/11. Then we have
the following isometric immersion f .

(6.23) f : CayP 2(c) → S25
(33c

40

)
× S323

(143c

8

)
→ S349

(429c

544

)
.

We shall show that the isometric immersion f given by (6.23) satisfies the inequality
(i) but not the inequality (ii) in the statement of Theorem 11.

In fact, we have
(i) 8H2 − 9c + 8c̃ = − 26

11c < 0,
(ii) 16〈h,∆h〉 − 15∆H2 = 16〈h, ∆h〉 = −16‖Dh‖2 = − 1960

121 c2 < 0.

7. Problems

We first pose the following problem related to Theorem 4:

Problem A. Let f be a λ-isotropic immersion of a real space form Mn(c;R) into
a real space form M̃n+p(c̃;R). If p 5 n(n + 1)/2, is f locally equivalent to one of
the following?

(1) f is a totally umbilic immersion of Mn(c;R) into M̃n+p(c̃;R), where p 5
n(n + 1)/2 and c = c̃.

(2) f is the second standard minimal immersion of Sn(c) into Sn+p(c̃), where
p = n(n + 1)/2− 1 and c̃ = 2(n + 1)c/n.

(3) f is a parallel immersion defined by

f = f2 ◦ f1 : Sn(c)
f1−→ Sn(n+3)/2−1(2(n + 1)c/n)

f2−→ M̃n+p(c̃;R),

where f1 is the second standard minimal immersion, f2 is a totally umbilic
immersion, p = n(n + 1)/2 and 2(n + 1)c/n = c̃.
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Needless to say every (λ-) isotropic submanifold Mn of a standard sphere
Sn+p(c) is also (

√
λ2 + c-) isotropic in Euclidean space Rn+p+1. This submani-

fold of Euclidean space is said to be spherical. In study of isotropic submanifolds
until now we have no nonzero isotropic submanifolds of Euclidean space RN , which
are not spherical. So we pose the following problem:

Problem B. Find examples of non-spherical nonzero isotropic submanifolds in Eu-
clidean space.

The following problem is related to Theorems 4, 5, 6 and 7:

Problem C. Let Mn be an n-dimensional Riemannian symmetric space of rank
one which is isotropically immersed into an (n + p)-dimensional standard sphere
Sn+p(c). Give a sufficient condition that Mn has parallel second fundamental form
in Sn+p(c) by using an inequality related to the codimension p.

In Theorems 4, 5, 6 and 7, we solve Problem 3 one by one for each rank one
symmetric space. The following problem is a generalization of Problem C:

Problem D. Let Mn be an n-dimensional locally symmetric space which is isotrop-
ically immersed into an (n + p)-dimensional standard sphere Sn+p(c). Give a suffi-
cient condition that Mn has parallel second fundamental form in Sn+p(c) by using
an inequality related to the codimension p.
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