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Abstract. In 1994, Lim-Xu asked whether the Maluta’s constant D(X) < 1 implies the

fixed point property for asymptotically nonexpansive mappings and gave a partial solution

for this question under an additional assumption for T , i.e., weakly asymptotic regularity

of T . In this paper, we shall prove that the result due to Lim-Xu is also satisfied for more

general non-Lipschitzian mappings in reflexive Banach spaces with weak uniform normal

structure. Some applications of this result are also added.

1. Introduction

Let C be a nonempty subset of a real Banach space X and let N be the set of
natural numbers. Let T : C → C be a mapping. T is said to be Lipschitzian if for
each n ∈ N, there exists a real number kn such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, x, y ∈ C.

In particular, T is said to be asymptotically nonexpansive [8] if limn→∞ kn = 1, and
it is said to be nonexpansive if kn = 1 for all n ∈ N. A set K satisfying T (K) ⊂ K
is said to be invariant under T or T -invariant. Let K be a nonempty subset of C.
For each x ∈ K, we set

cn(x; K) = sup
y∈K

(‖Tnx− Tny‖ − ‖x− y‖) ∨ 0.

We say that T is of partly asymptotically nonexpansive type if there exists a
nonempty bounded closed convex and T -invariant subset K of C such that
cn(x; K) → 0 for each x ∈ K. Recall that if cn(x) := cn(x; C) → 0 for each
x ∈ C, then T is said to be of asymptotically nonexpansive type (see [16]). A point
x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T ) the set of fixed
points of T ; that is, Fix(T ) = {x ∈ C : Tx = x}.
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In 1965, Kirk [15] proved that if C is a weakly compact convex subset of a
Banach space with normal structure, then every nonexpansive self-mapping T of C
has a fixed point, where a nonempty convex subset C of a normed linear space is
said to have normal structure if each bounded convex subset K of C consisting of
more than one point contains a nondiametral point; that is, a point z ∈ K such that
sup{‖z−x‖ : x ∈ K} < diam(K). Seven years later, in 1972, Goebel-Kirk [8] proved
that if the space X is assumed to be uniformly convex, then every asymptotically
nonexpansive self-mapping T of C has a fixed point. This was immediately extended
to mappings of asymptotically nonexpansive type in a space with its characteristic
of convexity, εo(X) < 1, by Kirk [16] in 1974. More recently these results have been
extended to wider classes of spaces, see for example [4], [6], [7], [14], [19], [18], [22].
In particular, Lim-Xu [19] and Kim-Xu [14] have demonstrated the existence of fixed
points for asymptotically nonexpansive mappings in Banach spaces with uniform
normal structure, see also [6] for some related results. Very recently, the result due
to Kim-Xu [14] was extended to mappings of asymptotically nonexpansive type by
Li-Sims [17] and Kim [10] independently.

On the other hand, fixed point theorems due to Lim-Xu [19] for asymptotically
nonexpansive mappings defined on a weakly compact convex subset C in a Banach
space X with either a weakly continuous duality mapping or for which D(X) < 1
having an additional condition, i.e., weak asymptotic regularity on C for T , where
D(X) is Maluta’s constant (see [20]), were carried over continuous mappings of
asymptotically nonexpansive type by Kim-Kim [13].

In this paper, we modify some results in [13] and carry over these to a wider class
of continuous mappings of partly asymptotically nonexpansive type in a Banach
space with weak uniform normal structure (see Theorem 3.2). Some applications
and examples of non-Lipschitzian mappings of partly asymptotically nonexpansive
type which are not of asymptotically nonexpansive type are also added.

2. Preliminaries

Let X be a real Banach space. First, let us introduce normal structure coefficient
of X introduced by Bynum [5]. For A ⊂ X, diam(A) and rA(A) denote the diameter
and the self-Chebyshev radius of A, respectively, i.e.,

diam(A) = sup
x,y∈A

‖x− y‖,

rA(A) = inf
x∈A

(sup
y∈A

‖x− y‖)

Recall that X has uniform normal structure (simply UNS) if N(X) > 1, where

N(X) = inf
{

diam(A)
rA(A)

: A ⊂ X bounded closed convex with diam(A) > 0
}

.

Obviously, if N(X) > 1, then X has normal structure.
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Recall that if X is a non-Schur Banach space, then the weakly convergent
sequence coefficient of X, denoted by WCS(X), is defined by

WCS(X) = sup{M > 0 : for each weakly convergent sequence {xn},
∃ y ∈ co({xn}) such that M · lim sup

n→∞
‖xn − y‖ ≤ A({xn})},

where co(K) denotes the closed convex hull of a set K and A({xn}) denotes the
asymptotic diameter of {xn}, i.e.,

A({xn}) = lim
n→∞

sup{‖xi − xj‖ : i, j ≥ n}.

It is easy to give a sharp expression WCS(X) as follows;

WCS(X) = sup{M : xn ⇀ u ⇒ M · lim sup
n→∞

‖xn − u‖ ≤ D({xn})},

where D({xn}) := lim supm→∞ lim supn→∞ ‖xn − xm‖ and “⇀” means the weak
convergence. For more details, see [5] and [12].

Note that if X is reflexive, then 1 ≤ N(X) ≤ BS(X) ≤ WCS(X) ≤ 2 (cf., [5]),
where BS(X) means the bounded sequence coefficient of X, i.e.,

BS(X) = sup
{
M : for any bounded sequence {xn} in X,

∃ y ∈ co({xn}) such that M · lim sup
n→∞

‖xn − y‖ ≤ A({xn})
}
.

While N(X) and BS(X) can be defined in every Banach space, WCS(X) is well
defined only in infinite dimensional reflexive spaces, where, by Eberlein-Šmulian
theorem, we can assure the existence of weakly convergent sequences which do not
converge.

The coefficient WCS(X) plays important roles in fixed point theory. A space
X such that WCS(X) > 1 is said to have weak uniform normal structure. It is
well-known [5] that if WCS(X) > 1, then X has weak normal structure; that is,
any weakly compact convex subset C of X with diam(C) > 0 has a nondiametral
point.

Let X be a Banach space. Recall that Maluta’s constant D(X) [20] of X is
defined by

D(X) = sup
{

lim sup d(xn+1, co({x1, x2, · · ·xn}))
diam({xn})

}
,

where the supremum is taken over all bounded nonconstant sequences {xn} in X.
We remark the following properties for Maluta’s constant given in [20].

Lemma 2.1. Let X be a Banach space. Then
(a) D(X) ≤ Ñ(X) := 1/N(X).
(b) D(X) = sup{D(Y ) : Y ⊂ X separable}.
(c) D(X) = 0 if and only if X is finite-dimensional.
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(d) If X is reflexive, then D(X) ≤ 1/WCS(X).
(e) If D(X) < 1, then the Banach space X is reflexive and has normal structure.

Remark 2.1. (i) The property (a) says that if X has uniform normal structure,
then D(X) < 1. However, the converse does not hold (see Example 5.1 and Corol-
lary 5.2 in [20]).

(ii) In view of (d), Maluta asked whether D(X) = 1/WCS(X) holds true for
every infinite dimensional reflexive space X. In 1985, Amir [2] gave a partial solution
for this question. In other words, the converse inequality D(X) ≥ 1/WCS(X) holds
if X satisfies Opial’s property, i.e., for any sequence {xn} converging weakly to x,
there holds the inequality

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, y (6= x) ∈ X.

Five years later, this question was completely solved by Prus [21].
(iii) The converse of (e) also does not hold (see Example 4.1 in [20], X =

(
∑⊕

`n)2 is reflexive and has normal structure although D(X) = 1).

Note that, by (e) of Lemma 2.1, if D(X) < 1, X has normal structure and
hence the fixed point property for nonexpansive mappings; that is, for every weakly
compact convex subset C of X, every nonexpansive map T : C → C has a fixed
point. However, it is still open whether D(X) < 1 implies the fixed point property
for asymptotically nonexpansive mappings. In 1994, Lim-Xu [19] gave a partial
answer for this question as follows:

Theorem LX [19]. Suppose that X is a Banach space such that D(X) < 1, that
C is a closed bounded convex subset of X, and that T : C → C is an asymptotically
nonexpansive mapping. Suppose, in addition, that T is weakly asymptotically regular
on C, i.e., Tn+1x− Tnx ⇀ 0 for all x ∈ C. Then T has a fixed point.

Immediately, Theorem LX was extended to all mappings of asymptotically non-
expansive type by Kim-Kim (see Corollary 3.3 in [13]). In fact, under the assump-
tion of weakly asymptotic regularity of T , the conditions for X and T can be
weakened, in other words, Theorem LX can be extended to mappings of partly
asymptotically nonexpansive type with WCS(X) > 1. Finally we need the follow-
ing two well known properties for ultrafilters (for example, see [1]).

Lemma 2.2. Let X be a Hausdorff topological linear space and let U be an ultrafilter
on a set I. Then, the following properties hold.

(i) if {xi}i∈I and {yi}i∈I are two subsets of X and limU xi = x and limU yi = y
both exists, then limU (xi + yi) = x + y and limU (αxi) = αx for any scalar α.

(ii) K is a compact subset of X if and only if any set {xi}i∈I ⊂ K is convergent
over any ultrafilter U on I.

3. Fixed point theorems

Let C be a nonempty subset of a Banach space X, and let T : C → C be
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a mapping. Suppose there exists a nonempty subset K of C and the weak limit
w- limU Tnx exists in K for each x ∈ K, where U is a free ultrafilter on N. We then
can define a mapping S : K → K by

Sx = w- lim
U

Tnx, x ∈ K. (1)

Note first that if K is weakly compact and T -invariant, by (ii) of Lemma 2.2, the
weak limit w- limU Tnx always exists in K for each x ∈ K. Furthermore, we can
see that Fix(T ) ∩ K ⊂ Fix(S). What are conditions on X and T for which the
converse inclusion remains true? Our purpose is to find some conditions on X and
T to answer the above question.

First, we exhibit the following easy lemma for our argument.

Lemma 3.1. Let C be a nonempty subset of a reflexive Banach space X. If
T : C → C is a continuous mapping of partly asymptotically nonexpansive type,
then there exist a nonempty weakly compact convex and T -invariant subset K of C
such that cn(x;K) → 0 for each x ∈ K, and a nonexpansive mapping S : K → K.

Proof. Since T is of partly asymptotically nonexpansive type and X is reflexive,
there exists a nonempty weakly compact convex and T -invariant subset K of C
such that cn(x;K) → 0 for each x ∈ K. Now defining S : K → K as in (1), S is
nonexpansive. In fact, for x, y ∈ K, Sx = w- limU Tnx and Sy = w- limU Tny. By
(i) of Lemma 2.2, we have Sx − Sy = w- limU (Tnx − Tny). Then there exists a
subsequence {nk} of {n} such that Tnkx− Tnky ⇀ Sx− Sy as k →∞. Since the
norm ‖ · ‖ is weakly lower semicontinuous and cn(x; K) → 0 as n → ∞ for each
x ∈ K, we have

‖Sx− Sy‖ ≤ lim inf
k→∞

‖Tnkx− Tnky‖
≤ lim sup

k→∞
[‖Tnkx− Tnky‖ − ‖x− y‖] + ‖x− y‖

≤ lim
k→∞

cnk
(x; K) + ‖x− y‖ = ‖x− y‖

for all x, y ∈ K. ¤
Now we will present a partial answer of the above question; that is, a suffi-

cient condition for Fix(S) ⊂ Fix(T )∩K, with a slight modification of the proof in
Lemma 3.1 of [13]. Here we shall give the detailed proof for convenience sake.

Theorem 3.2. Let C be a nonempty subset of a reflexive Banach space X with
WCS(X) > 1. If T : C → C is a continuous mapping of partly asymptotically non-
expansive type and weakly asymptotically regular on C, then there exist a nonempty
weakly compact convex and T -invariant subset K of C and a nonexpansive mapping
S : K → K such that Fix(T ) ∩K = Fix(S) 6= ∅.
Proof. Let K and S : K → K be as in Lemma 3.1. Clearly, Fix(S) 6= ∅ by Kirk
[15]. Now to complete the proof, it suffices to show that Fix(S) ⊂ Fix(T ) ∩ K.
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To this end, let x ∈ Fix(S); that is, w- limU Tnx = x ∈ K. Then there exists a
subsequence {Tnkx} of the sequence {Tnx} in K such that Tnkx ⇀ x as k → ∞.
By the well known property of WCS(X),

lim sup
k→∞

‖Tnkx− x‖ ≤ 1
WCS(X)

D({Tnkx}). (2)

By weakly asymptotic regularity of T , it follows that Tnk+mx ⇀ x as k → ∞ for
any m ≥ 0. On the other hand, for each i, j ∈ N with i > j, the weak lower
semicontinuity of the norm ‖ · ‖ immediately yields that

‖Tnj x− Tnix‖
≤ (‖Tnj x− Tnj (Tni−nj x)‖ − ‖x− Tni−nj x‖) + ‖x− Tni−nj x‖
≤ cnj (x; K) + ‖x− Tni−nj x‖ (Tnk+mx ⇀ x as k →∞, with m = ni − nj)
≤ cnj

(x; K) + lim inf
k→∞

‖Tnk+mx− Tni−nj x‖
≤ cnj

(x; K) + cni−nj
(x; K) + lim sup

k→∞
‖x− Tnkx‖.

Taking lim supi→∞ first and next lim supj→∞ on both sides, since cn(x; K) → 0 for
each x ∈ K, this yields

D({Tnkx}) ≤ lim sup
k→∞

‖x− Tnkx‖,

and this together with (2) gives (WCS(X)−1) · lim supk→∞ ‖Tnkx−x‖ ≤ 0, which
in turn implies that x = limk→∞ Tnkx. By the continuity and weak asymptotic
regularity of T , we have Tx = x, i.e., x ∈ Fix(T ). ¤

Remark 3.1. (i) Note that if C is weakly compact convex, the reflexivity of X can
be removed in Theorem 3.2.

(ii) Following (ii) of Remark 2.1, D(X) = 1/WCS(X) for every infinite dimen-
sional reflexive space X. Therefore, the assumption in Theorem 3.2 which X is a
reflexive Banach space with WCS(X) > 1 can be replaced by D(X) < 1.

(iii) As a direct consequence of the proof of Theorem 3.2, we notice that, under
the same assumptions of C, X and T , if {Tnkx} is a subsequence of {Tnx} con-
verging weakly to x ∈ K, then limk→∞ Tnkx = x. However, if the whole sequence
{Tnx} converges weakly, the weakly asymptotic regularity on C for T is abundant.

Lemma 3.3. Let C be a nonempty subset of a reflexive Banach space X with
WCS(X) > 1. If T : C → C is a continuous mapping of partly asymptotically
nonexpansive type, then w- limn→∞ Tnx = x ∈ K ⇒ limn→∞ Tnx = x ∈ Fix(T ).

With the similar method of the proof as in Theorem 3.2, we observe the following

Theorem 3.4. Let C be a nonempty bounded subset of a Banach space X with
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D(X) < 1. Let T : C → C be a continuous mapping of asymptotically nonexpansive
type which is weakly asymptotically regular on C. Suppose there exists a nonempty
closed convex subset K of C with the following property

x ∈ K =⇒ ωw(x) ⊂ K, (ω)

where ωw(x) is the weak ω-limit set of T at x; namely, ωw(x) = {y ∈ X : y =
w- limk→∞ Tnkx for some nk ↑ ∞}. Then there exists a nonexpansive mapping S :
K → K such that Fix(T ) ∩K = Fix(S) 6= ∅.
Proof. Since X is reflexive, K is weakly compact convex and WSC(X) > 1. Since
the sequence {Tnx} belongs to C, and co(C) is weakly compact, the weak limit
w- limU Tnx always exists in co(C) for each x ∈ K by (ii) of Lemma 2.2. Define
Sx = w- limU Tnx for each x ∈ K. Then, there exists a subsequence {nk} of {n}
such that Tnkx ⇀ Sx as k →∞. By property of (ω), it follows that Sx ∈ ωw(x) ⊂
K. Therefore, S : K → K is well defined, and also nonexpansive. Thus, repeating
the method of proof in Theorem 3.2, we can easily obtain the conclusion. ¤

It is clear that if C is a nonempty bounded subset of a Banach space X, and if
T : C → C is an asymptotically nonexpansive mapping with its Lipschitz constant
of Tn, kn ≥ 1, then T is a uniformly Lipschitzian mapping of asymptotically non-
expansive type. Therefore, we have the following easy result.

Corollary 3.5. Let C be a nonempty bounded subset of a Banach space X with
D(X) < 1. Let T : C → C be an asymptotically nonexpansive mapping which is
weakly asymptotically regular on C. Suppose there exists a nonempty closed convex
subset K of C with the property (ω). Then there exists a nonexpansive mapping
S : K → K such that Fix(T ) ∩K = Fix(S) 6= ∅.

Let C be a weakly compact convex subset of a Banach space X. Consider a
family F of subsets K of C which are nonempty, closed, convex, and satisfy the
following property (ω). The weak compactness of C now allows one to use Zorn’s
lemma to obtain a minimal element (say) K ∈ F . Therefore, as a direct conse-
quence of Theorem 3.2 or 3.4, we have the following result due to Kim-Kim [13].

Corollary 3.6. Let C be a nonempty weakly compact convex subset of a Banach
space X with WCS(X) > 1. If T : C → C is a continuous mapping of asymptoti-
cally nonexpansive type and weakly asymptotically regular on C, then Fix(T ) is a
nonempty nonexpansive retract of C.

Proof. Note first that T is of partly asymptotically nonexpansive type with K = C.
Since C is weakly compact and convex, in view of (i) of Remark 3.1, we can apply
for Theorem 3.2 or 3.4, and hence Fix(T ) = Fix(S) 6= ∅. Since S is nonexpansive,
it follows from [3] that Fix(S) is a nonempty nonexpansive retract of C. ¤

Recall that a Banach space X is said to be uniformly convex in every direction
[9] if δz(ε) > 0 for all ε > 0 and all z ∈ X with ‖z‖ = 1, where δz(·) means the
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modulus of convexity of X in the direction z, that is,

δz(ε) = {1− ‖x + y‖/2 : ‖x‖ ≤ 1, ‖y‖ ≤ 1, x− y = εz}.

There is clearly a space X which may be uniformly convex in every direction while
failing to be uniformly convex. Obviously, such spaces are always strictly convex.

Theorem 3.7. Suppose that X is a reflexive Banach space which is uniformly
convex in every direction and for which WCS(X) > 1 and that C is a nonempty
subset of X. Then, if T : C → C is a continuous mapping of partly asymptotically
nonexpansive type, T has a fixed point.

Proof. Use the same argument presented in the proof of Theorem 5 in [19] and
Lemma 3.3. ¤

Finally, we shall give examples of non-Lipschitzian mappings of partly asymp-
totically nonexpansive type which are not of asymptotically nonexpansive type,
inspired by the example 4.3 and 4.4 in [11]. These examples also satisfy all assump-
tions of Theorem 3.2.

Example A. Let X = C = R, the set of real numbers, and let |k| < 1. For each
x ∈ C, we define

Tx =





kx sin 1
x , x 6= 0, |x| ≤ 1/π;

0, x = 0;
π|x| − 1, |x| > 1/π.

Then, clearly cn(1) = cn(1; C) ≥ Tn1 − 1 → ∞, and so T is not of asymptotically
nonexpansive type. Note further that cn(x) = cn(x,C) → ∞ for all fixed x ∈ C.
But if we take K = [−1/π, 1/π], then K is T -invariant and also T is of partly
asymptotically nonexpansive type. Indeed, it suffices to show that cn(x; K) → 0 for
each x ∈ K. For fixed x ∈ K and n ∈ N, set

Hn(y) = |Tnx− Tny| − |x− y|, y ∈ K.

Then Hn(·) is continuous on K, and so it achieves its maximum in K, i.e., there
exists a yn ∈ K such that cn(x; K) = Hn(yn) ∨ 0. Since Tnz → 0 uniformly on K,
we have cn(x; K) → 0 for each x ∈ K.

Example B. Let X = R and C = (−∞, 1]. First consider a continuous non-
Lipschitzian mapping f : [0, 1/2] → [0, 1/4] defined by

f(x) =





n(2n+1)
n+1

(
x− 1

2n+1

)
, if 1

2n+1 ≤ x ≤ 1
2n , n ≥ 1;

− (n+1)(2n+1)
n+2

(
x− 1

2n+1

)
, if 1

2(n+1) ≤ x ≤ 1
2n+1 , n ≥ 1;

0, if x = 0.
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Note first that for each n ∈ N, the graph of f on each subinterval [1/2(n + 1), 1/2n]
consists of two segments connecting three points (1/2(n+1), 1/2(n+2)), (1/2n+1, 0)
and (1/2n, 1/2(n + 1)). For each x ∈ C = (−∞, 1], we now define

Tx =





x
1−2x , if x ≤ − 1

2 ;
f(x), if x ∈ [0, 1/2];
−f(−x), if x ∈ [−1/2, 0];
x2, if 1

2 ≤ x ≤ 1.

Obviously, |Tnz| ≤ 1
2(n+1) for |z| ≤ 1

2 , and so Tnz → 0 uniformly on [−1/2, 1/2].
Also, since |Tz| ≤ 1/2 for z ≤ −1/2, we also have Tnz → 0 uniformly on
(−∞,−1/2]. We thus obtain Tnz → 0 uniformly on (−∞, 1/2]. It is obvious
that T is not of asymptotically nonexpansive type because cn(1) = 1 for each n.
However, if we take K := [−1/2, 1/2], it is easy to see that K is T -invariant and T
is of partly asymptotically nonexpansive type, i.e., cn(x;K) → 0 for each x ∈ K.

Remark 3.2. If we take K := [−1/2, 0] in Example B, for this T -invariant closed
interval K of C, we can further prove that cn(x) → 0 for each x ∈ K. Indeed, for
x ∈ K, we set

cn(x) = sup
y∈C

(|Tnx− Tny| − |x− y|) ∨ 0

= sup
y∈(−∞,1/2]

(|Tnx− Tny| − |x− y|) ∨ sup
y∈[1/2,1]

(|Tnx− Tny| − |x− y|) ∨ 0

:= An(x) ∨Bn(x) ∨ 0.

Since Tnz → 0 uniformly on (−∞, 1/2], An(x) → 0 as n → ∞. Now it suffices
to show that lim supn→∞Bn(x) ≤ 0. For each n ∈ N, there exists yn ∈ [1/2, 1]
such that Bn(x) = |Tnx − Tnyn| − |x − yn|. If yn = 1, since − 1

2(n+1) ≤ Tnx ≤ 0,
we have |Tnx − 1| = 1 − Tnx ≤ 1 − x = |x − 1| for sufficiently large n, and so
lim supn→∞(|Tnx− 1| − |x− 1|) ≤ 0. Also if yn ∈ [1/2, 1), we easily have

lim sup
n→∞

(|Tnx− Tnyn| − |x− yn|) = − lim inf
n→∞

|x− yn| ≤ 0.

Thus, lim supn→∞Bn(x) ≤ 0 is obtained, and therefore cn(x) → 0 for each x ∈ K.
Finally, note that every sequence {Tnx} converges uniformly to 0 ∈ Fix(T ) ∩

K = {0} for each x ∈ K.
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