Examples of Quadratically Hyponormal Weighted Shifts

Wei He
Department of Mathematics, Fudan University, Shanghai 200-433, P. R. China
e-mail: hewei_neu@sohu.com
Chunji Li
Institute of System Science, College of Sciences, Northeastern University, Shenyang, Liaoning 110-004, P. R. China
e-mail: chunjili@hanmail.net

Abstract. In this paper, we have a further discussion about quadratically hyponormal weighted shifts with weight sequence $\alpha: 1,1, \sqrt{a},(\sqrt{b}, \sqrt{c}, \sqrt{d})^{\wedge}$ on the basis of sufficient conditions for positively quadratically hyponormal weighted shifts. We set examples of quadratically hyponormal weighted shifts with weight sequence of the above form, and also establish a general method for setting examples.

1. Introduction

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of bounded operators on \mathcal{H}. An operator $T \in \mathcal{L}(\mathcal{H})$ is hyponormal if $T^{*} T \geq T T^{*}$, weakly k hyponormal if $\lambda_{1} T+\lambda_{2} T^{2}+\cdots+\lambda_{k} T^{k}$ is hyponormal for every $\lambda_{i} \in \mathbb{C}, i=1, \cdots, k$. In particular, the weakly 2-hyponormal is often said to be quadratically hyponormal.

Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be the canonical orthonormal basis for $l^{2}\left(\mathbb{Z}_{+}\right)$, and let $\alpha=$ $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence of positive numbers. Let W_{α} be the unilateral weighted shift defined on $l^{2}\left(\mathbb{Z}_{+}\right)$by $W_{\alpha} e_{n}:=\alpha_{n} e_{n+1}$, for $n=0,1,2, \cdots$. The numbers

$$
\gamma_{0}:=1, \quad \gamma_{1}:=\alpha_{0}^{2}, \quad \gamma_{2}:=\alpha_{0}^{2} \alpha_{1}^{2}, \quad \cdots, \quad \gamma_{n}:=\alpha_{0}^{2} \cdots \alpha_{n-1}^{2}, \quad \cdots
$$

are called the moments of W_{α}. It is well known that W_{α} is hyponormal if and only if $\alpha_{n} \leq \alpha_{n+1}$, for $n=0,1,2, \cdots$.

In the unilateral weighted shift operators, the recursively generated weighted shift operators provide a good role to detect the quadraticality of shift operators (cf. [3]). We recall here the unilateral weighted shift which is generated by only three weights $0<\alpha_{0}<\alpha_{1}<\alpha_{2}$ (see [4, p. 370] for the general case). Given $\alpha: \alpha_{0}, \alpha_{1}, \alpha_{2}$ with $0<\alpha_{0}<\alpha_{1}<\alpha_{2}$. Then $\gamma_{0}:=1, \gamma_{1}:=\alpha_{0}^{2}, \gamma_{2}:=\alpha_{0}^{2} \alpha_{1}^{2}, \gamma_{3}:=$

Received March 31, 2004, and, in revised form, December 13, 2004.
2000 Mathematics Subject Classification: 44A60, 47B20.
Key words and phrases: quadratically hyponormal, weighted shift, weight sequence.
$\alpha_{0}^{2} \alpha_{1}^{2} \alpha_{2}^{2}$. Let

$$
v_{0}:=\binom{\gamma_{0}}{\gamma_{1}}, \quad v_{1}:=\binom{\gamma_{1}}{\gamma_{2}}, \quad v_{2}:=\binom{\gamma_{2}}{\gamma_{3}} .
$$

Then the vectors v_{0} and v_{1} are linearly independent in \mathbb{R}^{2}, so there exists a unique real numbers Ψ_{0}, Ψ_{1} such that

$$
\begin{equation*}
\Psi_{0} v_{0}+\Psi_{1} v_{1}=v_{2} \tag{1.1}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
\Psi_{0}=-\frac{\alpha_{0}^{2} \alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)}{\alpha_{1}^{2}-\alpha_{0}^{2}}, \quad \Psi_{1}=\frac{\alpha_{1}^{2}\left(\alpha_{2}^{2}-\alpha_{0}^{2}\right)}{\alpha_{1}^{2}-\alpha_{0}^{2}} . \tag{1.2}
\end{equation*}
$$

Moreover, the equality (1.1) is $\Psi_{0} \gamma_{0}+\Psi_{1} \gamma_{1}=\gamma_{2}$ and $\Psi_{0} \gamma_{1}+\Psi_{1} \gamma_{2}=\gamma_{3}$. Let $\widehat{\gamma}_{i}:=\gamma_{i}, i=0,1$ and let

$$
\begin{equation*}
\widehat{\gamma}_{n}:=\Psi_{0} \gamma_{n-2}+\Psi_{1} \gamma_{n-1}, \quad(n \geq 2) . \tag{1.3}
\end{equation*}
$$

Since $\widehat{\gamma}_{n}>0(n \geq 0)$ (see [3, Proof of Theorem 3.5]), we define $\widehat{\alpha}_{n}:=\left(\widehat{\gamma}_{n+1} / \widehat{\gamma}_{n}\right)^{1 / 2}$ $(n \geq 0)$ (so that $\widehat{\alpha}_{n}=\alpha_{n}$ for $\left.0 \leq n \leq 2\right)$. Hence we obtain a bounded sequence $\widehat{\alpha}:=$ $\left\{\widehat{\alpha}_{i}\right\}_{i=0}^{\infty}$ and we obtain the weighted shift operator $W_{\widehat{\alpha}}$ (or written as $\left.W_{\left(\alpha_{0}, \alpha_{1}, \alpha_{2}\right)^{\wedge}}\right)$.

In [6], Curto-Jung discussed weight sequence of the form, $\alpha: 1,1, \alpha_{2}, \alpha_{3}, \cdots,(1<$ $\left.\alpha_{2}<\alpha_{3}<\cdots\right)$ and presented a sufficient conditions for which W_{α} being positively quadratically hyponormal. Since the conditions of [6, Theorem 3.11] are very strict, it is not easy to give a concrete example. In this paper, we can give a concrete example for which the weight sequence of the form $\alpha: 1,1, \sqrt{a},(\sqrt{b}, \sqrt{c}, \sqrt{d})^{\wedge}$ for [6 , Theorem 3.11]. We can give many real examples of positively quadratically hyponormal weighted shift operators for Curto-Jung's theorem. Such examples are abundant!

2. Preliminaries and notations

We recall some notation which will be used frequently in this paper (cf. [6]). An operator $T \in \mathcal{L}(\mathcal{H})$ is quadratically hyponormal if $T+s T^{2}$ is hyponormal for every $s \in \mathbb{C}$. Let $\left\{e_{n}\right\}_{n=0}^{\infty}$ be an orthonormal basis for \mathcal{H}, let P_{n} denote the orthogonal projection onto the subspace generated by e_{0}, \cdots, e_{n}, and let W_{α} be a hyponormal weighted shift with a weight sequence $\alpha=\left\{\alpha_{n}\right\}_{n=0}^{\infty}$. For $s \in \mathbb{C}$, we let

$$
D(s):=\left[\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*},\left(W_{\alpha}+s W_{\alpha}^{2}\right)\right] .
$$

For $n \geq 0$, let

$$
\begin{aligned}
D_{n}(s) & =P_{n}\left[\left(W_{\alpha}+s W_{\alpha}^{2}\right)^{*},\left(W_{\alpha}+s W_{\alpha}^{2}\right)\right] P_{n} \\
& =\left(\begin{array}{cccccc}
q_{0} & \bar{r}_{0} & 0 & \cdots & 0 & 0 \\
r_{0} & q_{1} & \bar{r}_{1} & \cdots & 0 & 0 \\
0 & r_{1} & q_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q_{n-1} & \bar{r}_{n-1} \\
0 & 0 & 0 & \cdots & r_{n-1} & q_{n}
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
q_{k} & :=u_{k}+|s|^{2} v_{k} \\
r_{k} & :=s \sqrt{w_{k}}, \\
u_{k} & :=\alpha_{k}^{2}-\alpha_{k-1}^{2} \\
v_{k} & :=\alpha_{k}^{2} \alpha_{k+1}^{2}-\alpha_{k-1}^{2} \alpha_{k-2}^{2} \\
w_{k} & :=\alpha_{k}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k-1}^{2}\right)^{2} \quad(k \geq 0)
\end{aligned}
$$

and $\alpha_{-1}=\alpha_{-2}:=0$. Hence, W_{α} is quadratically hyponormal if and only if $D_{n}(s) \geq$ 0 for every $s \in \mathbb{C}$ and every $n \geq 0$. To do this, we consider $d_{n}(\cdot):=\operatorname{det}\left(D_{n}(\cdot)\right)$. By direct computation we have

$$
\begin{aligned}
d_{0} & =q_{0} \\
d_{1} & =q_{0} q_{1}-\left|r_{0}\right|^{2}
\end{aligned}
$$

$$
\begin{equation*}
d_{n+2}=q_{n+2} d_{n+1}-\left|r_{n+1}\right|^{2} d_{n} \quad(n \geq 0) \tag{2.1}
\end{equation*}
$$

Clearly, d_{n} is a polynomial in $t:=|s|^{2}$ of degree $n+1$, with Maclaurin expansion

$$
\begin{equation*}
d_{n}(t):=\sum_{i=0}^{n+1} c(n, i) t^{i} \tag{2.2}
\end{equation*}
$$

Theorem 2.1 ([4, Lemma 4.1, (ii)]). If $d_{n}(t)>0$ for all $t>0$ and all $n \geq 0$, then W_{α} is quadratically hyponormal.

Hence, it is sufficient to verify that $c(n, i) \geq 0$ and $c(n, n+1)>0$ in (2.2). To do it, we introduce the following terminology.

Definition 2.2. Let $\alpha: \alpha_{0}, \alpha_{1}, \cdots$ be a weight sequence. We say that W_{α} is positively quadratically hyponormal if $c(n, i) \geq 0$ for all $n, i \geq 0$ with $0 \leq i \leq n+1$, and $c(n, n+1)>0$ for all $n \geq 0$.

It is clear that positively quadratically hyponormal shifts are quadratically hyponormal. From (2.1), we have

$$
\begin{aligned}
& c(0,0)=u_{0}, \quad c(0,1)=v_{0} \\
& c(1,0)=u_{1} u_{0}, \quad c(1,1)=u_{1} v_{0}+u_{0} v_{1}-w_{0}, \quad c(1,2)=v_{1} v_{0}
\end{aligned}
$$

$$
\begin{equation*}
c(n+2, i)=u_{n+2} c(n+1, i)+v_{n+2} c(n+1, i-1)-w_{n+1} c(n, i-1) \tag{2.3}
\end{equation*}
$$

In particular, for our weight sequence $\alpha: 1,1, \alpha_{2}, \alpha_{3}, \cdots\left(1<\alpha_{2}<\alpha_{3}<\cdots\right)$, we can obtain directly

$$
\begin{aligned}
c(0,0) & =1, \quad c(0,1)=1 \\
c(1,0) & =0, \quad c(1,1)=\alpha_{2}^{2}-1, \quad c(1,2)=\alpha_{2}^{2} \\
c(2,0) & =0, \quad c(2,1)=0, \quad c(2,2)=\left(\alpha_{2}^{2}-1\right) \alpha_{2}^{2} \alpha_{3}^{2} \\
c(2,3) & =\alpha_{2}^{2}\left(\alpha_{2}^{2} \alpha_{3}^{2}-1\right), \quad c(3,0)=0, \quad c(3,1)=0 \\
c(3,2) & =\alpha_{2}^{2}\left(\alpha_{2}^{2}-1\right)\left(2 \alpha_{3}^{2}-\alpha_{2}^{2} \alpha_{3}^{2}-1\right) \\
c(3,3) & =\alpha_{2}^{2} \alpha_{3}^{2}\left(\alpha_{2}^{2} \alpha_{3}^{2} \alpha_{4}^{2}-\alpha_{3}^{2} \alpha_{4}^{2}-2 \alpha_{2}^{4}+3 \alpha_{2}^{2}-1\right) \\
c(3,4) & =\alpha_{2}^{2}\left(\alpha_{3}^{2} \alpha_{4}^{2}-\alpha_{2}^{2}\right)\left(\alpha_{2}^{2} \alpha_{3}^{2}-1\right)
\end{aligned}
$$

and

$$
\begin{equation*}
c(n, i)=u_{n} c(n-1, i)+v_{n} c(n-1, i-1)-w_{n-1} c(n-2, i-1) \tag{2.4}
\end{equation*}
$$

for $n \geq 5, \quad 0 \leq i \leq n+1$. From (2.4), we obtain

$$
\begin{aligned}
c(n, i)= & u_{n} c(n-1, i)+v_{n} v_{n-1} \cdots v_{5}\left(v_{4} c(3, i-n-3)-w_{3} c(2, i-n-3)\right) \\
& +\left\{\left(v_{n} u_{n-1}-w_{n-1}\right) c(n-2, i-1)\right. \\
& +v_{n}\left(v_{n-1} u_{n-1}-w_{n-1}\right) c(n-3, i-2)+\cdots \\
& \left.+v_{n} v_{n-1} \cdots v_{6}\left(v_{5} u_{4}-w_{4}\right) c(3, i-n+4)\right\}
\end{aligned}
$$

Hence, to satisfy $c(n, i) \geq 0$, we need only

$$
\begin{aligned}
v_{4} c(3, i-n+3)-w_{3} c(2, i-n+3) & \geq 0 \quad(i \geq 2) \\
v_{n+1} u_{n}-w_{n} & \geq 0 \quad(n \geq 4)
\end{aligned}
$$

It is exactly the following theorem..
Theorem 2.3 ([6, Theorem 3.11]). Let $\alpha: 1,1, \sqrt{a}, \sqrt{b}, \sqrt{c}, \sqrt{d}, \alpha_{6}, \cdots$ be a weight sequence and assume that W_{α} is hyponormal. Suppose that
(i) $(c a d-a b)(2 b-a b-1) \geq b^{2}(c-a)^{2}$,
(ii) $(c d-a b)\left(a b c-b c-2 a^{2}+3 a-1\right) \geq(a b-1)(c-a)^{2}$, and
(iii) $\left(\alpha_{n+1}^{2} \alpha_{n+2}^{2}-\alpha_{n}^{2} \alpha_{n-1}^{2}\right)\left(\alpha_{n}^{2}-\alpha_{n-1}^{2}\right) \geq \alpha_{n}^{2}\left(\alpha_{n+1}^{2}-\alpha_{n-1}^{2}\right)^{2} \quad(n \geq 4)$.

Then W_{α} is positively quadratically hyponormal.
In general, Theorem 2.3 (iii) is not easily checked. But, for the generated weighted sequence, we have the following result.

Proposition 2.4 ([6, Lemma 2.1]). Let

$$
\alpha: \alpha_{0}, \alpha_{1}, \cdots, \alpha_{k-2},\left(\alpha_{k-1}, \alpha_{k}, \alpha_{k+1}\right)^{\wedge}
$$

with $0<\alpha_{k-1}<\alpha_{k}<\alpha_{k+1}(k \geq 1)$ and let W_{α} be the unilateral weighted shift associated with α. Then
(i) $v_{n+1}=\Psi_{1}\left(u_{n+1}+u_{n}\right) \quad(n \geq k)$;
(ii) $w_{n}=u_{n} v_{n+1} \quad(n \geq k)$ and

$$
u_{n}=-\Psi_{0} \frac{u_{n-1}}{\alpha_{n-2}^{2} \alpha_{n-1}^{2}} \quad(n \geq k+1)
$$

where

$$
\Psi_{0}=-\frac{\alpha_{k}^{2} \alpha_{k-1}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k}^{2}\right)}{\alpha_{k}^{2}-\alpha_{k-1}^{2}} \quad \text { and } \quad \Psi_{1}=\frac{\alpha_{k}^{2}\left(\alpha_{k+1}^{2}-\alpha_{k-1}^{2}\right)}{\alpha_{k}^{2}-\alpha_{k-1}^{2}}
$$

It is easy to see that if Proposition 2.4 (ii) holds, then Theorem 2.3 (iii) holds for $n \geq k$.

In particular, we consider the weight sequence of the first two equal weights, i.e., $\alpha: 1,1, \alpha_{2}, \alpha_{3}, \cdots$.

3. Examples of Quadratically hyponormal weighted shift

In this section, we check the conditions of Theorem 2.3 for the following three weight sequences

$$
\alpha:\left\{\begin{array}{l}
1,(1, \sqrt{a}, \sqrt{b})^{\wedge} \\
1,1,(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge} \\
1,1, \sqrt{a},(\sqrt{b}, \sqrt{c}, \sqrt{d})^{\wedge}
\end{array} \quad(0<a<b<c<d)\right.
$$

Example 3.1. First, we consider W_{α} with $\alpha: 1,(1, \sqrt{a}, \sqrt{b})^{\wedge}([6$, Example 3.13]). Since

$$
\gamma_{0}=\gamma_{1}=\gamma_{2}=1, \quad \gamma_{3}=a, \quad \gamma_{4}=a b
$$

From (1.1), we have

$$
\Psi_{0}=-\frac{a(b-a)}{a-1}, \quad \Psi_{1}=\frac{a(b-1)}{a-1}
$$

Thus

$$
\begin{aligned}
& \gamma_{5}=\Psi_{0} \gamma_{3}+\Psi_{1} \gamma_{4}=\frac{a^{2}\left(a-2 b+b^{2}\right)}{a-1} \\
& \gamma_{6}=\Psi_{0} \gamma_{4}+\Psi_{1} \gamma_{5}=\frac{a^{2}\left(2 a^{2} b-4 a b^{2}+a b^{3}+a b-a^{2}+b^{2}\right)}{(a-1)^{2}}
\end{aligned}
$$

Taking the symbol of Theorem 2.3, we have

$$
\begin{aligned}
& c=\alpha_{4}^{2}=\frac{\gamma_{5}}{\gamma_{4}}=\frac{a\left(a-2 b+b^{2}\right)}{(a-1) b} \\
& d=\alpha_{5}^{2}=\frac{\gamma_{6}}{\gamma_{5}}=\frac{2 a^{2} b-4 a b^{2}+a b^{3}+a b-a^{2}+b^{2}}{(a-1)\left(a-2 b+b^{2}\right)}
\end{aligned}
$$

If the condition (i) of Theorem 2.3 holds, then it must be

$$
\frac{a^{2}(a-b)(b-1)^{4}}{(a-1)^{2} b} \geq 0
$$

This induces a contradiction for $a<b$. Hence by Theorem 2.3, there is no example of positively quadratically hyponormal weighted shift, in the case of the form α : $1,(1, \sqrt{a}, \sqrt{b})^{\wedge}$.

Example 3.2. We now consider W_{α} with $\alpha: 1,1,(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}$. Since

$$
\gamma_{0}=\gamma_{1}=\gamma_{2}=1, \quad \gamma_{3}=a, \quad \gamma_{4}=a b, \quad \gamma_{5}=a b c
$$

From

$$
\Psi_{0}\binom{1}{a}+\Psi_{1}\binom{a}{a b}=\binom{a b}{a b c}
$$

we have

$$
\Psi_{0}=\frac{a b(b-c)}{b-a}, \quad \Psi_{1}=\frac{b(c-a)}{b-a}
$$

Thus

$$
\gamma_{6}=\Psi_{0} \gamma_{4}+\Psi_{1} \gamma_{5}=\frac{a b^{2}\left(a b-2 a c+c^{2}\right)}{b-a}
$$

Taking the symbol of Theorem 2.3,

$$
d=\alpha_{5}^{2}=\frac{\gamma_{6}}{\gamma_{5}}=\frac{b\left(a b-2 a c+c^{2}\right)}{c(b-a)}
$$

If the condition (i) of Theorem 2.3 holds, then it must be

$$
-\frac{(-1+b)^{2} b(a-c)^{2}}{b-a} \geq 0
$$

So it is a contradiction for $a<b$ again. This means that there is no example of positively quadratically hyponormal weighted shift, in the case of the form α : $1,1,(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge} \quad(1<a<b<c)$.

From the above two examples, we know that the condition of Theorem 2.3 is very strict, it is not easy to give an example of quadratically hyponormal weighted shift operators. But, it is lucky for us to give an example of quadratically hyponormal weighted shift with weight sequence of the form $\alpha: 1,1, \sqrt{a},(\sqrt{b}, \sqrt{c}, \sqrt{d})^{\wedge}(1<$ $a<b<c<d)$. This is the following result.
Theorem 3.3. Let $\alpha: 1,1, \sqrt{\frac{4}{3}},(\sqrt{x}, \sqrt{2}, \sqrt{d})^{\wedge}\left(\frac{4}{3}<x<2<d\right)$. If $d>4$, then
W_{α} is quadratically hyponormal for all x in $\left[\left(1+d-\sqrt{1-4 d+d^{2}}\right) / 2,2\right)$.
Proof. The condition (iii) of Theorem 2.3 is satisfied, due to the condition (ii) of Proposition 2.4. Let

$$
H=\left\{x \mid 4 / 3<x<2, \text { and } W_{\alpha} \text { is quadratically hyponormal }\right\}
$$

Our goal is finding the range of d such that H is non-empty. Taking $a=\frac{4}{3}, b=x$, $c=2$ in the condition (i) of Theorem 2.3, we have

$$
\begin{equation*}
f(x):=2 x^{2}-2(d+1) x+3 d \leq 0 \tag{3.1}
\end{equation*}
$$

Let $x_{1}, x_{2}\left(x_{1} \leq x_{2}\right)$ be the two roots of $f(x)=0$.
Case 1: $x_{1}, x_{2} \in\left(\frac{4}{3}, 2\right)$. In this case, $\Delta:=4 d^{2}-16 d+4 \geq 0$ and $\frac{4}{3}<-\frac{-2(d+1)}{2 \times 2}<$ 2. That is, $d \geq 2+\sqrt{3}$ and $\frac{5}{3}<d<3$. It is impossible.

Case 2: only one of x_{1} and x_{2} is in $\left(\frac{4}{3}, 2\right)$. In this case, $f\left(\frac{4}{3}\right) \cdot f(2)<0$. That is, $d>4$. The range of x in (3.1) is

$$
\frac{1}{2}\left(1+d-\sqrt{1-4 d+d^{2}}\right) \leq x<2
$$

Case 3: $x_{1}<\frac{4}{3}$ and $x_{2}>2$. In this case, $f\left(\frac{4}{3}\right)<0$ and $f(2)<0$. That is, $d<-\frac{8}{3}$ and $d>4$. It is impossible.

Therefore, if we want $H \neq \emptyset$, then $d>4$. Thus

$$
H=\left\{x \mid\left(1+d-\sqrt{1-4 d+d^{2}}\right) / 2 \leq x<2\right\}
$$

Similarly, we can discuss the condition (ii) of Theorem 2.3. From (ii), we obtain

$$
\begin{equation*}
g(x):=12 x^{2}-2(9 d+1) x+3(5 d-2) \leq 0 \tag{3.2}
\end{equation*}
$$

Let x_{1}^{\prime} and $x_{2}^{\prime}\left(x_{1}^{\prime} \leq x_{2}^{\prime}\right)$ be the two roots of $g(x)=0$.
Case 1: $x_{1}^{\prime}, x_{2}^{\prime} \in\left(\frac{4}{3}, 2\right)$. In this case, $g(2)>0$. That is, $d<\frac{38}{21}$. It is contradict to $d>2$.

Case 2: only one of $x_{1}^{\prime}, x_{2}^{\prime}$ is in $\left(\frac{4}{3}, 2\right)$. In this case, $g\left(\frac{4}{3}\right) g(2)<0$. That is, $\frac{38}{27}<d<\frac{38}{21}$. It is also contradict to $d>2$.

Case 3: $x_{1}^{\prime}<\frac{4}{3}$ and $x_{2}^{\prime}>2$. In this case, $d>2, g\left(\frac{4}{3}\right)<0, g(2)<0$. That is, $d>2$.

Therefore, if we want $H \neq \emptyset, d>4$.
Therefore, according to the above method, we can give many concrete examples of quadratically hyponormal weighted shifts satisfying Curto-Jung's theorem.

Example 3.4. In Theorem 3.3, we let $d=10$. If

$$
1.59488 \approx \frac{1}{2}(11-\sqrt{61}) \leq x<2
$$

then W_{α} is quadratically hyponormal.
We discussed one particular case for $a=\frac{4}{3}, c=2$. In general, the problem is as following.

Problem 3.5. Let W_{α} be the weighted shift operator with

$$
\alpha: 1,1, \sqrt{a},(\sqrt{x}, \sqrt{c}, \sqrt{d})^{\wedge}(a<x<c<d)
$$

Giving a, c such that $2 a+c^{2}-2 a c>0$, find the range of d for which

$$
H=\left\{x \mid a<x<c, \text { and } W_{\alpha} \text { is quadratically hyponormal. }\right\} \neq \emptyset
$$

For the problem, we give the following algorithm similar to the above method.
Algorithm 3.6. For the condition (i) of Theorem 2.3, we can obtain an quadratic inequality of $x, A x^{2}+B x+C \leq 0$, where $A=2 a+c^{2}-2 a c>0, B=$ $-(a+2 c d-a c d), C=c d$. Let $f(x)=A x^{2}+B x+C$ and $x_{1}, x_{2}\left(x_{1} \leq x_{2}\right)$ be the two roots of $f(x)=0$.

Case 1: $x_{1}, x_{2} \in(a, c)$

$$
d>c, \Delta \geq 0, f(a)>0, f(c)>0, \quad \text { and } a<-\frac{B}{2 A}<c
$$

the set of solution E_{1}.
Case 2: only one of x_{1}, x_{2} is in (a, c)

$$
d>c \text { and } f(a) f(c)<0
$$

the set of solution E_{2}.
Case 3: $x_{1}<a$ and $x_{2}>c$

$$
d>c, f(a)<0 \text { and } f(c)<0
$$

the set of solution E_{3}.

Therefore, if we want $H \neq \emptyset$, then the range of d is

$$
E=E_{1} \cup E_{2} \cup E_{3}
$$

Similarly, for the condition (ii) of Theorem 2.3, we can obtain the range F of d. Then if we choose d in the set $D=E \cap F$, then $H \neq \emptyset$.

Example 3.7. For $\alpha: 1,1, \sqrt{a},(\sqrt{x}, \sqrt{c}, \sqrt{d})^{\wedge}$, we let $a=\frac{3}{2}, c=2$. By taking Algorithm 3.6, we know that $D=\emptyset$. (Here, we omit the calculation). Hence, we can not give an example of quadratically hyponormal weighted shift operators with the weight sequence $\alpha: 1,1, \sqrt{\frac{3}{2}},(\sqrt{b}, \sqrt{2}, \sqrt{d})^{\wedge}$, which means the condition of Theorem 2.3 is very strict.

Remark. From Example 3.1, Example 3.2 and Example 3.7, we know that the condition of Theorem 2.3 is very strict, especially, in most cases, the condition (i) is not satisfied. Hence, it is necessary to find another conditions. In [4], they presented a sufficient condition for $W_{\sqrt{x},(\sqrt{a}, \sqrt{b}, \sqrt{c})^{\wedge}}$. Using this result, [6, Example 3.13] discussed the range

$$
R=\left\{(x, y) \mid W_{1,(1, \sqrt{x}, \sqrt{y})^{\wedge}} \text { is quadratically hyponormal. }\right\}
$$

It is clear that the condition of Theorem 4.3 in [4] is more weak than the condition of Theorem 2.3. Henceforth, we do need to weaken the condition of Theorem 2.3. Maybe, it can be done by changing the expression (2.4).

References

[1] R. Curto, Quadratically hyponormal weighted sequence, Integral Equations and Operator Theory, 13(1990), 49-66.
[2] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math, 51(1990), 69-91.
[3] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations and Operator Theory, 17(1993), 202-246.
[4] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, II, Integral Equations and Operator Theory, 18(1994), 369-426.
[5] A. Joshi, Hyponormal polynomial of monotone shifts, Indian J. Pure Appl. Math., 6(1975), 681-686.
[6] R. Curto and I. Jung, Quadratically hyponormal weighted shifts with two equal weights, Integral Equations and Operator Theory, 37(2000), 208-231.

