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Abstract. We use a congruence relation on deductive systems of a Hilbert algebra H, to

define a uniform structure on H and investigate the corresponding topology.

1. Introduction

The notion of a Hilbert algebra was introduced in early 50-ties by L. Henkin
and T. Skolem for some investigations of implicative in intuicionstic and other non-
classical logics. In 60-ties, these algebras were studied especially by A. Horn and
A. Diego from algebraic point of view. I. Chajda and R. Halas [2] and W. A.
Dudek [3] introduce and study deductive systems (ideals) and congruence relations
in Hilbert algebra. In this paper we consider a collection of deductive systems and
use congruence relation with respect to deductive systems to define a uniformity
and make the Hilbert algebra into a uniform topological space with the desired
subset as the open sets.

Towards our goal, we renew some needed algebraic notions in section 2. Then
consider the uniformity based on congruence relations with respect to given collec-
tion of deductive systems and construct the induced topology by this uniformity in
section 3. In the last section we study the properties of these topology.

2. Preliminaries

Definition 2.1 ([3]). A Hilbert algebra is an algebra (H, ∗, 1) where H is a
nonempty set, ∗ is a binary operation and 1 is a constant such that the following
axioms hold for each x, y, z ∈ H:

(H1) x ∗ (y ∗ x) = 1,

(H2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,

(H3) x ∗ y = 1 and y ∗ x = 1 imply x = y.
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Lemma 2.2 ([3]). In each Hilbert algebra H, the following relation hold for all
x, y, z ∈ H:

(1) x ∗ x = 1,

(2) 1 ∗ x = x,

(3) x ∗ 1 = 1,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

It is easily checked that in Hilbert algebra H the relation ≤ defined by

x ≤ y ⇔ x ∗ y = 1

is a partial order on H with 1 as the largest element.

Definition 2.3 ([2]). A nonempty subset I of a Hilbert algebra H is called an
ideal of H if

(1) 1 ∈ I,

(2) x ∗ y ∈ I for all x ∈ H, y ∈ I,

(3) (y2 ∗ (y1 ∗ x)) ∗ x ∈ I for all x ∈ H, y1, y2 ∈ I.

Definition 2.4 ([3]). A deductive system of Hilbert algebra H is a nonempty set
D ⊆ H such that

(1) 1 ∈ D,

(2) x ∈ D and x ∗ y ∈ D imply y ∈ D.

Theorem 2.5 ([3]). A nonempty subset A of Hilbert algebra H is an ideal if and
only if it is a deductive system of H.

Theorem 2.6 ([3]). If D is a deductive system of a Hilbert algebra H, then the
relation ΘD defined by

(a, b) ∈ ΘD ⇔ a ∗ b ∈ D and b ∗ a ∈ D

is a congruence relation on H.

3. Uniformity in Hilbert algebra

From now on H is a Hilbert algebra and D ⊆ H is a deductive system of Hilbert
algebra H.

Let X be a nonempty set and U , V be any subset of X ×X. Define:

U ◦ V = {(x, y) ∈ X ×X | for some z ∈ X, (z, y) ∈ U and (x, z) ∈ V },
U−1 = {(x, y) ∈ X ×X | (y, x) ∈ U},

∆ = {(x, x) ∈ X ×X | x ∈ X}.
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Definition 3.1 ([4]). By a uniformity on X we shall mean a nonempty collection

K of subsets of X ×X which satisfies the following conditions:

(U1) ∆ ⊆ U for any U ∈ K,

(U2) if U ∈ K, then U−1 ∈ K,

(U3) if U ∈ K, then there exists a V ∈ K, such that V ◦ V ⊆ U ,

(U4) if U, V ∈ K, then U ∩ V ∈ K,

(U5) if U ∈ K, and U ⊆ V ⊆ X ×X then V ∈ K.

The pair (X,K) is called a uniform structure (uniform space).

Theorem 3.2. Let H be a Hilbert algebra and Λ be an arbitrary family of deductive
systems of the Hilbert algebra H such that it is closed under intersection. If UD =
{(x, y) ∈ H ×H | xΘDy} and K∗= {UD | D ∈ Λ}, then K∗ satisfies the conditions
(U1)-(U4).

Proof. (U1): Since D is a deductive system of H, xΘDx for any x ∈ H, hence
∆ ⊆ UD, for all UD ∈ K∗.
(U2): For any UD ∈ K∗ we have

(x, y) ∈ (UD)−1 ⇔ (y, x) ∈ UD ⇔ yΘDx ⇔ xΘDy ⇔ (x, y) ∈ UD.

Therefore (UD)−1 = UD ∈ K∗
(U3): For any UD ∈ K∗, the transitivity of ΘD implies that UD ◦ UD ⊆ UD.
(U4): For any UD, UJ ∈ K∗, we claim that UD ∩UJ = UD∩J . Let (x, y) ∈ UD ∩UJ .
Then xΘDy and xΘJy. Hence x ∗ y ∈ D, y ∗ x ∈ D, x ∗ y ∈ J and y ∗ x ∈ J . Then
xΘ(D∩J)y and hence (x, y) ∈ UD∩J .

Conversely, let (x, y) ∈ UD∩J . Then xΘ(D∩J)y, hence x ∗ y ∈ D ∩ J and
y ∗ x ∈ D ∩ J . Then x ∗ y ∈ D, y ∗ x ∈ D, x ∗ y ∈ J and y ∗ x ∈ J . Therefore xΘDy
and xΘJy. Then (x, y) ∈ UD ∩ UJ . So UD ∩ UJ = UD∩J . Since D and J are in Λ,
D ∩ J ∈ Λ, thus UD ∩ UJ ∈ K∗. ¤

Theorem 3.3. Let K = {U ⊆ H ×H | UD ⊆ U for some UD ∈ K∗}. Then K is a
uniformity on H and the pair (H, K) is a uniform structure.

Proof. By Theorem 3.2, the collection K satisfies the conditions (U1)-(U4). It
suffices to show that K satisfies (U5). Let U ∈ K and U ⊆ V ⊆ H ×H. Then there
exists a UD ⊆ U ⊆ V , which implies that V ∈ K. ¤

Let x ∈ H and U ∈ K. Define:

U [x] := {y ∈ H | (x, y) ∈ U}.

Theorem 3.4. Given a Hilbert algebra H, then

T = {G ⊆ H | ∀ x ∈ G, ∃ U ∈ K, U [x] ⊆ G}
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is a topology on H.

Proof. It is clear that ∅ ∈ T and H ∈ T . Also from the very nature of that
definition, it is clear that T is closed under arbitrary union. Finally to show that
T is closed under finite intersection, let G, K ∈ T and suppose x ∈ G ∩K. Then
there exist U and V ∈ K such that U [x] ⊆ G and V [x] ⊆ K. Let W = U ∩ V , then
W ∈ K. Also W [x] ⊆ U [x] ∩ V [x] hence W [x] ⊆ G ∩K and then G ∩K ∈ T . Thus
T is topology on H. ¤

Note that for any x in H, U [x] is an open neighborhood of x.

Lemma 3.5. Let H be a Hilbert algebra. If D 6= {1} then UD 6= U{1}.

Proof. Since D 6= {1}, there exists z ∈ D such that z 6= 1. We have z ∗ 1 = 1 ∈ D
and 1 ∗ z = z ∈ D, since D is a deductive system. Hence 1 ∈ UD[z] and then
UD 6= U{1}. ¤

Corollary 3.6. Let H be a Hilbert algebra. Then D = {1} ∈ Λ, if and only if T is
discrete topology.

Proof. Let D = {1} ∈ Λ. Then UD ∈ K∗. Hence UD[x] ∈ T , for all x ∈ H. We have

UD[x] = {y | yΘDx} = {y | x ∗ y = 1, y ∗ x = 1} = {x}

Hence T is discrete topology on H.
Conversely, let T be a discrete topology on H, hence {x} is open, for all x ∈ H.

Given x ∈ H, there exists D ∈ Λ such that UD[x] ⊆ {x}. Since x ∈ UD[x],
UD[x] = {x}. We denote D := Dx. Now if J =

⋂{Dx | x ∈ H}, then UJ [x] = {x}
for arbitrary x ∈ H, indeed if y ∈ UJ [x] then yΘJx. Hence x ∗ y ∈ Dx, y ∗ x ∈ Dx,
for all x ∈ H. Then yΘDx, for all x ∈ H. It is follows that y ∈ UD[x] = {x},
then y = x. Hence UJ [x] = {x} = U{1}[x], for all x ∈ H. Then UJ = U{1}, and
by Lemma 3.5 we have J = {1}. Since Λ is closed under intersection, we conclude
that J = {1} ∈ Λ. ¤

Definition 3.7. Let (H,K) be a uniform structure, where H is a Hilbert algebra.
Then the topology T is called the uniform topology on H induced by K.

Proposition 3.8. Topological space (H,T ) is completely regular.

Proof. See Theorem 14.2.9, [4]. ¤

4. Topological property of space (H, T )

Let H be a Hilbert algebra and B, C subsets of H. Then we define B ∗ C as
follows:

B ∗ C = {x ∗ y | x ∈ B, y ∈ C}.
Let H be a Hilbert algebra and T be a topology defined on H. We say that the pair
(H,T ) is a topological Hilbert algebra, if ∗ is continuous with respect to T . The
continuity of ∗ is equivalent to the following property:
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(I): Let O be an open set and a, b ∈ H such that a ∗ b ∈ O. Then there exist
open sets O1 and O2 such that a ∈ O1, b ∈ O2 and O1 ∗O2 ⊆ O.

Let H be a Hilbert algebra and T defined as in Theorem 3.4. Then with the
above notations we have the following:

Theorem 4.1. The pair (H, T ) is a topological Hilbert algebra.

Proof. Assume that x ∗ y ∈ G, with x, y ∈ H and G an open subset of H. Then
there exists U ∈ K, U [x ∗ y] ⊆ G and a deductive system D such that UD ⊆ U . We
claim that the following relation holds:

UD[x] ∗ UD[y] ⊆ U [x ∗ y]

Indeed for h ∈ UD[x] and k ∈ UD[y] we get xΘDh and yΘDk. It follows that
x ∗ yΘDh ∗ k, hence (x ∗ y, h ∗ k) ∈ UD ⊆ U . Thus h ∗ k ∈ UD[x ∗ y] ⊆ U [x ∗ y] and
then h ∗ k ∈ G. ¤

Theorem 4.2 ([4]). Let X be a set and S⊂ P(X ×X) be a family such that for
every U ∈ S the following conditions hold:

(a) ∆ ⊆ U ,

(b) U−1 contains a member of S, and

(c) there exists a V ∈ S, such that V ◦ V ⊆ U . Then there exists a unique
uniformity U , for which S is a sub-base.

Theorem 4.3. Let B = {UD | D is a deductive system of H}. Then B is a sub-base
for a uniformity of H. We denote this topology by S.

Proof. Since ΘD is congruence relation, then it is clear that B satisfies axioms of
Theorem 4.2. ¤

Corollary 4.4. Topology T is weaker than S.

Proposition 4.5. If we let M = {UM | M is a maximal deductive system of H}.
Then M is a sub-base for a uniformity of H. We denote this topology by Max.

Corollary 4.6. Topology T is weaker than Max.

Theorem 4.7. Any deductive system in the collection Λ is a clopen subset of H.

Proof. Let D be a deductive system of H in Λ and y ∈ Dc. Then y ∈ UD[y] and
we get Dc ⊆ ⋃{UD[y] | y ∈ Dc}. We claim that, UD[y] ⊆ Dc, for all y ∈ Dc. Let
z ∈ UD[y], then zΘDy. Hence z ∗ y ∈ D. If z ∈ D then y ∈ D, a contradiction.
So z ∈ Dc and we get

⋃{UD[y] | y ∈ Dc} ⊆ Dc. Hence Dc =
⋃{UD[y] | y ∈ Dc}

and since UD[y] is open for all y ∈ H, D is a closed subset. We show that D =⋃{UD[y] | y ∈ D}. If y ∈ D then y ∈ UD[y] and we get D ⊆ ⋃{UD[y] | y ∈ D}.
Let y ∈ D, if z ∈ UD[y] then zΘDy and so y ∗ z ∈ D. Since y ∈ D hence z ∈ D and
we get

⋃{UD[y] | y ∈ D} ⊆ D. So D is also an open subset of H. ¤
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Theorem 4.8. For any x ∈ H and D ∈ Λ, UD[x] is a clopen subset of H.

Proof. We show that (UD[x])c is open. Let y ∈ (UD[x])c, then x ∗ y ∈ Dc or
y ∗x ∈ Dc. Without loss of generality y ∗x ∈ Dc. Since Dc is open then there exists
U ∈ K such that U [y ∗ x] ⊆ Dc. From y ∗ x ∈ Dc we conclude that UD[y ∗ x] ⊆ Dc.
Therefore UD[y] ∗ UD[x] ⊆ UD[y ∗ x] ⊆ Dc. We claim that UD[y] ⊆ (UD[x])c. Let
z ∈ UD[y], then z ∗ x ∈ (UD[y] ∗ UD[x]). So z ∗ x ∈ Dc then we get z ∈ (UD[x])c.
Hence UD[x] is closed. It is clear that UD[x] is open . So UD[x] is clopen subset of
H. ¤

Corollary 4.9. The topological space (H, T ) is not connected space.

Notation. We denote the uniform topology obtained by an arbitrary family Λ, by
TΛ and if Λ = {D}, we denote TΛ by TD.

Theorem 4.10. TΛ = TJ , where J =
⋂{D | D ∈ Λ}.

Proof. K and K∗ be as in Theorem 3.2 and 3.3. Now let Λ0 = {J}, define:
(K0)∗ = {UJ} and K0 = {U | UJ ⊆ U}.

Let G ∈ TΛ. So for all x ∈ G, there exists U ∈ K such that U [x] ⊆ G. From
J ⊆ D we get that UJ ⊆ UD, for all deductive systems D of H. Since U ∈ K,
there exists D ∈ Λ such that UD ⊆ U . Hence UJ [x] ⊆ UD[x] ⊆ G. Since UJ ∈ K0,
G ∈ TJ . So TΛ ⊆ TJ .

Conversely, let I ∈ TJ then for all x ∈ I, there exist U ∈ K0 such that U [x] ⊆ I.
So UJ [x] ⊆ I and sine Λ is closed under intersection, J ∈ Λ. Then we get UJ ∈ K
and so I ∈ TΛ. Thus TJ ⊆ TΛ. ¤

Corollary 4.11. Let D and J are deductive systems of Hilbert algebra H and
D ⊆ J then J is clopen in topological space (H, TD).

Proof. Let Λ = {D, J}. Then by Theorem 4.10, TΛ = TD and therefore J is clopen
in topological space (H, TD). ¤

Theorem 4.12. Let D and J be deductive systems of Hilbert algebra H. Then
TD ⊆ TJ if and only if J ⊆ D.

Proof. Let J ⊆ D. Consider: Λ1 = {D}, K1
∗ = {UD}, K1 = {U | UD ⊆ U} and

Λ2 = {J}, K2
∗ = {UJ}, K2 = {U | UJ ⊆ U}.

Let G ∈ TD. Then for all x ∈ G, there exist U ∈ K1 such that U [x] ⊆ G. Since
J ⊆ D, then UJ ⊆ UD and since UD[x] ⊆ G, we get UJ [x] ⊆ G. UJ ∈ K2 and so
G ∈ TJ .

Conversely, let TD ⊆ TJ . Assuming the contrary let a ∈ J \D. Since D ∈ TD,
we obtain that D ∈ TJ . Then for all x ∈ D, there exists U ∈ K2 such that U [x] ⊆ D,
and so UJ [x] ⊆ D. Then UJ [1] ⊆ D. Since J is deductive system a ∈ J implies,
1 ∗ a ∈ J . Then aΘJ1, so a ∈ UJ [1], thus a ∈ D, which is a contradiction. ¤
Corollary 4.13. Let D,J be deductive systems of H. Then D = J if and only if
TD = TJ .
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