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ABSTRACT. In this paper, we prove that every exchange ring can be characterized by
potent elements. Also we extend [10, Theorem 3.1 and Theorem 4.1] to quasi-clean rings
in which every element is a sum of a potent element and a unit.

1. Introduction

Let R be an associative ring with an identity. An element e € R is potent in case
there exists some integer n > 2 such that e = e. An element e € R is idempotent
in case e = e. An element e € R is periodic in case there exist positive integers
k,l(k # 1) such that z¥ = z!. Clearly, every potent element is periodic. But the

o 1\° (o 1\’ 0 1
converse is not true. Since (O 0) = (0 O) , we know that <O 0) € M»(Z)
is a periodic element, while it is not a potent element. Also we see that every
idempotent is potent, while there exists a potent element which is not idempotent.

For example, (é _01> € M>(Z) is a potent element, while it is not idempotent.
Thus we have proper inclusions { all idempotents } C { all potent elements } C {
all periodic elements } in a ring R.

Recall that a ring R is an exchange ring if for every right R-module A and two
decompositions A = M @ N = @;c1A;, where M = R and the index set [ is finite,
there exist submodules A} C A; such that A = M & (®;e1A;). Clearly, regular
rings, w-regular rings, semi-perfect rings, left or right continuous rings, clean rings
and unit C*-algebras of real rank zero (cf. [2, Theorem 7.2]) are all exchange rings.
In this paper, we prove that every exchange ring can be characterized by potent
elements.

A ring R is a clean ring if every element in R is a sum of an idempotent and
a unit. Many author studied clean rings such as [4]-[5] and [8]-[9]. Following Y.
Ye([10]), we say that R is a semi-clean ring if every element is a sum of a periodic
element and a unit. He proved that if G is a cyclic group of order 3 then Z,G is
a semi-clean ring, while Z;G is not a clean ring. In this paper, we introduce the
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notion of quasi-clean rings as a natural generalization of semi-clean rings. We say
that a ring R is a quasi-clean ring in case every element in R is a sum of a potent
element and a unit. In fact, we observe that if G is a cyclic group of order 3 then
Z,G is a quasi-clean ring.

2. Exchange ring

It is well known that a ring R is an exchange ring if and only if for any z € R
there exists an idempotent e € Rx such that 1 —e € R(1 — ). In this paper, we
prove that every exchange ring can be characterized by potent elements.

Lemma 2.1. The following are equivalent:
(1) R is an exchange ring.

(2) For any x € R, there exists a potent e € Rx such that 1 —e € R(1 — z).

Proof. (1) = (2) is clear by [8, Theorem 2.1 and Proposition 1.1].

(2) = (1). For any x € R, there exists a potent e € Rz such that 1 —e €
R(1 — x). Assume that e® = e for some integer n > 2. Let f = "~ !. Then
f2 =272 = ¢e""2 = f. Furthermore, we have f € Re C Rx such that 1 — f =
l—eml=(0+4e+ --+e"2)(1-¢) € R(1—e) C R(1 —z). Using [8, Theorem
2.1 and Proposition 1.1], R is an exchange ring. (]

Recall that an element u € R is a square root of 1 if u? = 1. In [4, Proposition
10], it is shown that a ring R with % € R is a clean ring if and only if every element
of R is a sum of a unit and a square root of 1.

Proposition 2.2. The following are equivalent:
(1) R is an exchange ring.
(2) For any x € R, there exist an idempotent e € Rx and a central square root u

of 1 such that w —e € R(1 — x).

Proof. (1) = (2) is obvious by [8, Theorem 2.1 and Proposition 1.1].

(2) = (1). For any = € R, there exist an idempotent e € Rz and a central
square root u of 1 such that u —e € R(1 —z). Let f = ue. Then f € Rz and
1— f € R(1—x). It is easy to verify that f2 = f. Therefore R is an exchange ring
by Lemma 2.1. O

Lemma 2.3. The following are equivalent:

(1) R is an exchange ring.

(2) For any x € R, there exists a potent e € R such that e — v € R(z — 2?).
Proof. (1) = (2) is clear by [8, Theorem 2.1 and Proposition 1.1].

(2) = (1). For any = € R, there exists a potent e € R such that e—z € R(x—x?).
Assume that e —x = r(z —?) for ar € R. Hence we have e = (14+r(1—z))x € Rx
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such that 1 —e = (1 —rz)(1 —x) € R(1 — x). According to Lemma 2.1, R is an
exchange ring. O

Let I be a left ideal of a ring R. We say that idempotents can be p-lifted modulo
I provided that if  — 22 € I then there exists a potent y € R such that x —y € I.

Theorem 2.3. The following are equivalent:
(1) R is an exchange ring.

(2) Idempotents can be p-lifted modulo every left ideal.

Proof. (1) = (2) is obvious by [8, Corollary 1.3].

(2) = (1). Let z € R, and let I = R(z — 2?). Clearly, z — 2% € I. Thus we
have a potent e € R such that e — x € I. That is, e — x € R(z — z?). In view of
Lemma 2.3, we conclude that R is an exchange ring. O

We use J(R) to denote the Jacobson radical of R. Furthermore, we can derive
the following characterizations of exchange rings.

Proposition 2.4. The following are equivalent:
(1) R is an exchange ring.

(2) For any x € R, there exist a potent e € Rx and a ¢ € R such that (1 —e) —
c(l—2x) e J(R).

(3) For any x € R, there exists a potent e € Rx such that R = Re + R(1 — x).
(4) R/J(R) is an exchange ring and idempotents can be p-lifted modulo J(R).

Proof. (1) = (2) is clear by [8, Proposition 1.1].

(2) = (3). For any x € R, we have a potent ¢ € Rx and a ¢ € R such
that (1 —e) —c¢(l1 —z) € J(R). Hence e + ¢(1 —x) = 1+ r for a r € J(R).
Clearly, 1 +r € U(R); hence, (1 +7) e+ (1 +7r)"'e(1 — ) = 1. This means that
R = Re + R(1 — x).

(3) = (1). For any = € R, there exist a potent e € Rx such that R = Re+ R(1—
x). So we have r, s € R such that re + s(1 —x) = 1. As e € R is a potent element,
we can find an integer n such that e” = e. Let f = ¢""! + (1 — e" })re. Then
we check that f = f2 € Rx. Furthermore, we have 1 — f = (1 — " 1)(1 —re) =
(1 —e"1)s(1 —x) € R(1 — z), as required.

(1) = (4) is obvious by [8, Theorem 2.1 and Proposition 1.1].

(4) = (1). Let e € R be an idempotent. Then we have a potent f € R such that
e—f € J(R). Since f € R is potent, we can find an integer n > 2 such that f™ = f.
Ase=f, wehavee =e""! = Tn_l = ?n_l. Clearly, f»~! € R is an idempotent.
So idempotents can be lifted modulo J(R). Therefore R is an exchange ring by [8,
Proposition 1.5]. O
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3. Quasi-clean ring

eitRe1 -+ e1Re,
Let ey, e3, -+, e, € R be idempotents. Then : : =
e,Rer -+ epRe,
€iriier - €1T1nen
{ : : ri; € R (1 <i,j< n)} forms a ring with the
€1Tn1€1 "** €1Tnnén
identity diag(ey, ---, en).
Lemma 3.1. Let ey, es, ---, e, be idempotents of a ring R. If e;Re1, eaRes,
etRer -+ ei1Re,
-, epRe, are all quasi-clean rings, then so is the ring ) :
e,Reir -+ e Re,

Proof. The result holds for n = 1. Assume that the result holds for n = k > 1. Let
n=k+1. Set

62R€2 e 62R€k+1 €2R61
ext1Res - eppiRepyn ), ext1Rer ), |
€1R61 N
N = (elRez elRekH) and T = ( ) .
1k M B (k+1)x (k-+1)

. a n
Given any (m b € T, we can choose potent elements e; € e;Re;, e3 € B

and invertible elements u; € U(ejRey), ug € U(B) such that a = e; + u; and
b— mul_ln = e5 + us. Clearly, we have

a ny U7 n
(m b> =0 e)+ (m U +mu11n> ’

One easily checks that

-1 _ 1 IR
(u1 n > (U1 Yurtnug tmayt —uy g 1)
— v .

-1 -1, -1 —
m  us+mu;n —Uy MUy Uy

Clearly, <%1 1? ) € T is a potent matrix. By induction, we complete the proof.l]
2

Theorem 3.2. If R is a quasi-clean ring, then so is M, (R) for all positive integers
n.

Proof. In Lemma 3.1, we choose e; = --- = e, = 1. Then we prove that M, (R) is
a quasi-clean ring, as asserted. ([l
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Lemma 3.3. Let e be an idempotent of a ring R. If eRe and (1 —e)R(1 —e) are
quasi-clean rings, then so is R.

~ eRe eR(1—¢)
Proof. Clearly, we have R <(1 —¢)Re (1—e)R(1 - e)) . Therefore we complete
the proof by Lemma 3.1. O
Lemma 3.4. Let ey, es, ---, e, be idempotents of a ring R. Then the following
are equivalent:
(1) e1Rey, eaRes, ---, enRe, are quasi-clean rings.
(2) The ring
e1Rey 0 . 0
€2R61 €2R€2 cee 0
e,Rer e,Res --- e,Re,
is a quasi-clean ring.
Proof. (1) = (2). Suppose ejReq, eaRes, ---, e,Re, are quasi-clean rings.

Clearly, the result holds for n = 1. Assume now that the result holds for n = k£ > 1.
Let

62R€2 0 s 0
83R€2 63R€3 0 62R61
B = . . . . P M = 5
‘ ’ ' : ext1Re
ext1Res  exp1Res -+ eppiRent1/ |, FHLEEL 1k
T = (elﬁel g) and e= <601 8) .
(k+1)x (k+1) (k+1)x (k+1)
Then B is a quasi-clean ring. Since eTe = e;Re; and (diag(el,~-- L ekt1) —
e)T (diag(er,--- ,ext1) — €) = B are both quasi-clean rings, by Lemma 3.3, T
e1Req 0 cee 0
€2R61 62R€2 s 0
is a quasi-clean ring. By induction, we have . . ) . is a
enRei1 ep,Res --- ey Re,
quasi-clean ring.
Conversely, assume that the condition (2) holds. Let
€1R61 O e 0
€2R€1 €2R€2 R 0
A = . . )
en—1RRe1 ep_1Rex -+ ep_1Rep_q (n—1)x (n—1)
M = (enRel e,Rey --- enRen,l)(nil)Xl.
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. On—l 0 A 0
Given any a S enRe’ru then we check that < 0 a) € (M enRen an- So

we have a potent matrix 7{1 2) and an invertible matrix (Z 2) such that

(O O) = (f O) + (u O). Clearly, a = g+v and v € U(e, Rey,). As (f O)
0 a m g n v m g
f

m
gP = g. This means that g € e, Re,, is a potent element. Therefore we show that
en Re, is a quasi-clean ring. Likewise, e; Req, ---, en_1Re,_1 are quasi-clean rings.
O

P
is potent, we can find an integer p > 2 such that (7{1 2) = ; hence,

Let LT M, (R) denote the ring of all n x n lower triangular matrices over R and
UT M, (R) denote the ring of all n X n upper triangular matrices over R. A natural
problem is how to extend Theorem 3.2 to triangular matrix extensions. We now
derive the following.

Theorem 3.5. Let n be a positive integer. Then the following are equivalent:
(1) R is a quasi-clean ring.
(2) LTM,(R) is a quasi-clean ring.
(3) UTM,(R) is a quasi-clean ring.

Proof. (1) < (2). In Lemma 3.4, we choose ey = --- = e, = 1. Then R is a
quasi-clean ring if and only if so is LT M,,(R).
(1) & (3) is proved in the same manner. O

Corollary 3.6. If G is a cyclic group of order 3, then the ring M,,(Z,G), LT M, (R)
and UT M, (Z,G) are quasi-clean rings for all positive integers.

Proof. Let G = {1, a,a?} with a® = 1. Given any ot T2a+ 7:—33@2 = %ﬂmﬁ c
Z,G, by [10, Theorem 3.1], we have

k+1 2
ktlatma _, o

a2 + k-+la+(m+n)a? » 7& 2;

n
2
1+ k—n—i—l% p=2, k, I, m are all even;

3k_2n+(3l+2a+(3m+n)a2 p=2,k, I, mare all odd;

—a—a?

2—a—a
+(l— 2
k (Z TL)(Z-‘,—’I’TLCL

- p=2, oneof k, I, m

is even, the other odd;

) .
0+ Hla% otherwise.

In the proof of [10, Theorem 3.1], the elements on the second columns at the right
are all units. Clearly, the elements on the first columns at the right are all potent
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elements. So Z,G is a quasi-clean ring. Therefore we complete the proof by Theo-
rem 3.2 and Theorem 3.5. g

Corollary 3.7. Let G be a cyclic group of order 3, A1 € M,(Z,G), Az €
LTM,(Z,G) and Az € UTM,(Z,G). Then the following hold:

(1) There exist an idempotent matriz E1 € M, (R) and two invertible matrices
Ui, Vi € M,,(R) such that Ay = E1U; + V.

(2) There exist an idempotent matriz E; € LT M, (R) and two invertible matrices
Uy, V5 € LTMn(R) such that Ay = EsUs + V.

(3) There exist an idempotent matriz Es € UT M, (R) and two invertible matrices
Us, V3 € UTM,(R) such that A3 = E3Us + V3.

Proof. (1) In view of Corollary 3.6, we have a potent B; € M, (R) and an invertible
matrix V3 € M, (R) such that 47 = By + V;. As Bj is potent, there exists an
integer m > 2 such that By = B". Set W; = B’f%2 — B{'“l +1,. Then U~ =
B, — Bl_1 + I,,. Furthermore, we have BiU = B{n_l. Let B = B{n_l and
U, = Wfl. Then A1 = E1U; + V7, as asserted.

(2) and (3) are proved in the same manner. O

It is well known that every clean ring is an exchange ring. We note that there
exists a quasi-clean ring which is not an exchange ring. Let R = Z3)NZ) = {a/b |
a,b € Z,b#0and 31band 510b}. By [1, Proposition 16], each element x € R can
be written in the form z = w4+ e or £ = v — e where u € U(R) and e € R is an
idempotent. Clearly, e € R is a potent element. Hence R is a quasi-clean ring.
But R is not an exchange ring because it is indecomposable, and not quasilocal.
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