## A Note on Potent Elements

Huanyin Chen<br>Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People's Republic of China<br>e-mail: chyzxl@sparc2.hunnu.edu.cn

Abstract. In this paper, we prove that every exchange ring can be characterized by potent elements. Also we extend [10, Theorem 3.1 and Theorem 4.1] to quasi-clean rings in which every element is a sum of a potent element and a unit.

## 1. Introduction

Let $R$ be an associative ring with an identity. An element $e \in R$ is potent in case there exists some integer $n \geq 2$ such that $e^{n}=e$. An element $e \in R$ is idempotent in case $e^{2}=e$. An element $e \in R$ is periodic in case there exist positive integers $k, l(k \neq l)$ such that $x^{k}=x^{l}$. Clearly, every potent element is periodic. But the converse is not true. Since $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{3}$, we know that $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in M_{2}(\mathbb{Z})$ is a periodic element, while it is not a potent element. Also we see that every idempotent is potent, while there exists a potent element which is not idempotent. For example, $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \in M_{2}(\mathbb{Z})$ is a potent element, while it is not idempotent. Thus we have proper inclusions $\{$ all idempotents $\} \subset\{$ all potent elements $\} \subset\{$ all periodic elements $\}$ in a ring $R$.

Recall that a ring $R$ is an exchange ring if for every right $R$-module $A$ and two decompositions $A=M \oplus N=\oplus_{i \in I} A_{i}$, where $M_{R} \cong R$ and the index set $I$ is finite, there exist submodules $A_{i}^{\prime} \subseteq A_{i}$ such that $A=M \oplus\left(\oplus_{i \in I} A_{i}^{\prime}\right)$. Clearly, regular rings, $\pi$-regular rings, semi-perfect rings, left or right continuous rings, clean rings and unit $C^{*}$-algebras of real rank zero (cf. [2, Theorem 7.2]) are all exchange rings. In this paper, we prove that every exchange ring can be characterized by potent elements.

A ring $R$ is a clean ring if every element in $R$ is a sum of an idempotent and a unit. Many author studied clean rings such as [4]-[5] and [8]-[9]. Following Y. $\mathrm{Ye}([10])$, we say that $R$ is a semi-clean ring if every element is a sum of a periodic element and a unit. He proved that if $G$ is a cyclic group of order 3 then $\mathbb{Z}_{p} G$ is a semi-clean ring, while $\mathbb{Z}_{7} G$ is not a clean ring. In this paper, we introduce the

Key words and phrases: potent element, exchange ring, quasi-clean ring.
notion of quasi-clean rings as a natural generalization of semi-clean rings. We say that a ring $R$ is a quasi-clean ring in case every element in $R$ is a sum of a potent element and a unit. In fact, we observe that if $G$ is a cyclic group of order 3 then $\mathbb{Z}_{p} G$ is a quasi-clean ring.

## 2. Exchange ring

It is well known that a ring $R$ is an exchange ring if and only if for any $x \in R$ there exists an idempotent $e \in R x$ such that $1-e \in R(1-x)$. In this paper, we prove that every exchange ring can be characterized by potent elements.

Lemma 2.1. The following are equivalent:
(1) $R$ is an exchange ring.
(2) For any $x \in R$, there exists a potent $e \in R x$ such that $1-e \in R(1-x)$.

Proof. (1) $\Rightarrow(2)$ is clear by [8, Theorem 2.1 and Proposition 1.1].
(2) $\Rightarrow$ (1). For any $x \in R$, there exists a potent $e \in R x$ such that $1-e \in$ $R(1-x)$. Assume that $e^{n}=e$ for some integer $n \geq 2$. Let $f=e^{n-1}$. Then $f^{2}=e^{2 n-2}=e e^{n-2}=f$. Furthermore, we have $f \in R e \subseteq R x$ such that $1-f=$ $1-e^{n-1}=\left(1+e+\cdots+e^{n-2}\right)(1-e) \in R(1-e) \subseteq R(1-x)$. Using [8, Theorem 2.1 and Proposition 1.1], $R$ is an exchange ring.

Recall that an element $u \in R$ is a square root of 1 if $u^{2}=1$. In [4, Proposition 10], it is shown that a ring $R$ with $\frac{1}{2} \in R$ is a clean ring if and only if every element of $R$ is a sum of a unit and a square root of 1 .

Proposition 2.2. The following are equivalent:
(1) $R$ is an exchange ring.
(2) For any $x \in R$, there exist an idempotent $e \in R x$ and a central square root $u$ of 1 such that $u-e \in R(1-x)$.

Proof. (1) $\Rightarrow(2)$ is obvious by [8, Theorem 2.1 and Proposition 1.1].
(2) $\Rightarrow(1)$. For any $x \in R$, there exist an idempotent $e \in R x$ and a central square root $u$ of 1 such that $u-e \in R(1-x)$. Let $f=u e$. Then $f \in R x$ and $1-f \in R(1-x)$. It is easy to verify that $f^{3}=f$. Therefore $R$ is an exchange ring by Lemma 2.1.

Lemma 2.3. The following are equivalent:
(1) $R$ is an exchange ring.
(2) For any $x \in R$, there exists a potent $e \in R$ such that $e-x \in R\left(x-x^{2}\right)$.

Proof. (1) $\Rightarrow(2)$ is clear by [8, Theorem 2.1 and Proposition 1.1].
(2) $\Rightarrow$ (1). For any $x \in R$, there exists a potent $e \in R$ such that $e-x \in R\left(x-x^{2}\right)$.

Assume that $e-x=r\left(x-x^{2}\right)$ for a $r \in R$. Hence we have $e=(1+r(1-x)) x \in R x$
such that $1-e=(1-r x)(1-x) \in R(1-x)$. According to Lemma 2.1, $R$ is an exchange ring.

Let $I$ be a left ideal of a ring $R$. We say that idempotents can be p-lifted modulo $I$ provided that if $x-x^{2} \in I$ then there exists a potent $y \in R$ such that $x-y \in I$.

Theorem 2.3. The following are equivalent:
(1) $R$ is an exchange ring.
(2) Idempotents can be p-lifted modulo every left ideal.

Proof. (1) $\Rightarrow(2)$ is obvious by [8, Corollary 1.3].
$(2) \Rightarrow(1)$. Let $x \in R$, and let $I=R\left(x-x^{2}\right)$. Clearly, $x-x^{2} \in I$. Thus we have a potent $e \in R$ such that $e-x \in I$. That is, $e-x \in R\left(x-x^{2}\right)$. In view of Lemma 2.3, we conclude that $R$ is an exchange ring.

We use $J(R)$ to denote the Jacobson radical of $R$. Furthermore, we can derive the following characterizations of exchange rings.

Proposition 2.4. The following are equivalent:
(1) $R$ is an exchange ring.
(2) For any $x \in R$, there exist a potent $e \in R x$ and a $c \in R$ such that $(1-e)-$ $c(1-x) \in J(R)$.
(3) For any $x \in R$, there exists a potent $e \in R x$ such that $R=R e+R(1-x)$.
(4) $R / J(R)$ is an exchange ring and idempotents can be p-lifted modulo $J(R)$.

Proof. $(1) \Rightarrow(2)$ is clear by [8, Proposition 1.1].
$(2) \Rightarrow(3)$. For any $x \in R$, we have a potent $e \in R x$ and a $c \in R$ such that $(1-e)-c(1-x) \in J(R)$. Hence $e+c(1-x)=1+r$ for a $r \in J(R)$. Clearly, $1+r \in U(R)$; hence, $(1+r)^{-1} e+(1+r)^{-1} c(1-x)=1$. This means that $R=R e+R(1-x)$.
$(3) \Rightarrow(1)$. For any $x \in R$, there exist a potent $e \in R x$ such that $R=R e+R(1-$ $x)$. So we have $r, s \in R$ such that $r e+s(1-x)=1$. As $e \in R$ is a potent element, we can find an integer $n$ such that $e^{n}=e$. Let $f=e^{n-1}+\left(1-e^{n-1}\right) r e$. Then we check that $f=f^{2} \in R x$. Furthermore, we have $1-f=\left(1-e^{n-1}\right)(1-r e)=$ $\left(1-e^{n-1}\right) s(1-x) \in R(1-x)$, as required.
$(1) \Rightarrow(4)$ is obvious by [8, Theorem 2.1 and Proposition 1.1].
$(4) \Rightarrow(1)$. Let $e \in R$ be an idempotent. Then we have a potent $f \in R$ such that $e-f \in J(R)$. Since $f \in R$ is potent, we can find an integer $n \geq 2$ such that $f^{n}=f$. As $\bar{e}=\bar{f}$, we have $\bar{e}=\bar{e}^{n-1}=\bar{f}^{n-1}=\bar{f}^{n-1}$. Clearly, $f^{n-1} \in R$ is an idempotent. So idempotents can be lifted modulo $J(R)$. Therefore $R$ is an exchange ring by [8, Proposition 1.5].

## 3. Quasi-clean ring

Let $e_{1}, e_{2}, \cdots, e_{n} \in R$ be idempotents. Then $\left(\begin{array}{ccc}e_{1} R e_{1} & \cdots & e_{1} R e_{n} \\ \vdots & \ddots & \vdots \\ e_{n} R e_{1} & \cdots & e_{n} R e_{n}\end{array}\right)=$
$\left\{\left.\left(\begin{array}{ccc}e_{1} r_{11} e_{1} & \cdots & e_{1} r_{1 n} e_{n} \\ \vdots & \ddots & \vdots \\ e_{1} r_{n 1} e_{1} & \cdots & e_{1} r_{n n} e_{n}\end{array}\right) \right\rvert\, r_{i j} \in R \quad(1 \leq i, j \leq n)\right\}$ forms a ring with the identity $\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)$.

Lemma 3.1. Let $e_{1}, e_{2}, \cdots, e_{n}$ be idempotents of a ring R. If $e_{1} R e_{1}, e_{2} R e_{2}$, $\cdots, e_{n} R e_{n}$ are all quasi-clean rings, then so is the ring $\left(\begin{array}{ccc}e_{1} R e_{1} & \cdots & e_{1} R e_{n} \\ \vdots & \ddots & \vdots \\ e_{n} R e_{1} & \cdots & e_{n} R e_{n}\end{array}\right)$.
Proof. The result holds for $n=1$. Assume that the result holds for $n=k \geq 1$. Let $n=k+1$. Set

$$
\begin{aligned}
& B=\left(\begin{array}{ccc}
e_{2} R e_{2} & \cdots & e_{2} R e_{k+1} \\
\vdots & \ddots & \vdots \\
e_{k+1} R e_{2} & \cdots & e_{k+1} R e_{k+1}
\end{array}\right)_{k \times k}, \quad M=\left(\begin{array}{c}
e_{2} R e_{1} \\
\vdots \\
e_{k+1} R e_{1}
\end{array}\right)_{k \times 1}, \\
& N=\left(\begin{array}{lll}
e_{1} R e_{2} & \cdots & \left.e_{1} R e_{k+1}\right)_{1 \times k}
\end{array} \text { and } \quad T=\left(\begin{array}{cc}
e_{1} R e_{1} & N \\
M & B
\end{array}\right)_{(k+1) \times(k+1)} .\right.
\end{aligned}
$$

Given any $\left(\begin{array}{cc}a & n \\ m & b\end{array}\right) \in T$, we can choose potent elements $e_{1} \in e_{1} R e_{1}, e_{2} \in B$ and invertible elements $u_{1} \in U\left(e_{1} R e_{1}\right), u_{2} \in U(B)$ such that $a=e_{1}+u_{1}$ and $b-m u_{1}^{-1} n=e_{2}+u_{2}$. Clearly, we have

$$
\left(\begin{array}{cc}
a & n \\
m & b
\end{array}\right)=\left(\begin{array}{ll}
0 & e_{2}
\end{array}\right)+\left(\begin{array}{cc}
u_{1} & n \\
m & u_{2}+m u_{1}^{-1} n
\end{array}\right) .
$$

One easily checks that

$$
\left(\begin{array}{cc}
u_{1} & n \\
m & u_{2}+m u_{1}^{-1} n
\end{array}\right)^{-1}=\left(\begin{array}{cc}
u_{1}^{-1}+u_{1}^{-1} n u_{2}^{-1} m u_{1}^{-1} & -u_{1}^{-1} n u_{2}^{-1} \\
-u_{2}^{-1} m u_{1}^{-1} & u_{2}^{-1}
\end{array}\right) .
$$

Clearly, $\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right) \in T$ is a potent matrix. By induction, we complete the proof.
Theorem 3.2. If $R$ is a quasi-clean ring, then so is $M_{n}(R)$ for all positive integers $n$.
Proof. In Lemma 3.1, we choose $e_{1}=\cdots=e_{n}=1$. Then we prove that $M_{n}(R)$ is a quasi-clean ring, as asserted.

Lemma 3.3. Let e be an idempotent of a ring $R$. If $e$ Re and $(1-e) R(1-e)$ are quasi-clean rings, then so is $R$.
Proof. Clearly, we have $R \cong\left(\begin{array}{cc}e R e & e R(1-e) \\ (1-e) R e & (1-e) R(1-e)\end{array}\right)$. Therefore we complete the proof by Lemma 3.1.

Lemma 3.4. Let $e_{1}, e_{2}, \cdots, e_{n}$ be idempotents of a ring $R$. Then the following are equivalent:
(1) $e_{1} R e_{1}, e_{2} R e_{2}, \cdots, e_{n} R e_{n}$ are quasi-clean rings.
(2) The ring

$$
\left(\begin{array}{cccc}
e_{1} R e_{1} & 0 & \cdots & 0 \\
e_{2} R e_{1} & e_{2} R e_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e_{n} R e_{1} & e_{n} R e_{2} & \cdots & e_{n} R e_{n}
\end{array}\right)
$$

is a quasi-clean ring.
Proof. (1) $\Rightarrow$ (2). Suppose $e_{1} R e_{1}, e_{2} R e_{2}, \cdots, e_{n} R e_{n}$ are quasi-clean rings. Clearly, the result holds for $n=1$. Assume now that the result holds for $n=k \geq 1$. Let

$$
\begin{aligned}
B & =\left(\begin{array}{cccc}
e_{2} R e_{2} & 0 & \cdots & 0 \\
e_{3} R e_{2} & e_{3} R e_{3} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e_{k+1} R e_{2} & e_{k+1} R e_{3} & \cdots & e_{k+1} R e_{k+1}
\end{array}\right)_{k \times k}, \quad M=\left(\begin{array}{c}
e_{2} R e_{1} \\
\vdots \\
e_{k+1} R e_{1}
\end{array}\right)_{1 \times k}, \\
T & =\left(\begin{array}{cc}
e_{1} R e_{1} & 0 \\
M & B
\end{array}\right)_{(k+1) \times(k+1)} \quad \text { and } \quad e=\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 0
\end{array}\right)_{(k+1) \times(k+1)}
\end{aligned}
$$

Then $B$ is a quasi-clean ring. Since $e T e \cong e_{1} R e_{1}$ and $\left(\operatorname{diag}\left(e_{1}, \cdots, e_{k+1}\right)-\right.$ e) $T\left(\operatorname{diag}\left(e_{1}, \cdots, e_{k+1}\right)-e\right) \cong B$ are both quasi-clean rings, by Lemma $3.3, T$ is a quasi-clean ring. By induction, we have $\left(\begin{array}{cccc}e_{1} R e_{1} & 0 & \cdots & 0 \\ e_{2} R e_{1} & e_{2} R e_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ e_{n} R e_{1} & e_{n} R e_{2} & \cdots & e_{n} R e_{n}\end{array}\right)$ is a quasi-clean ring.

Conversely, assume that the condition (2) holds. Let

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
e_{1} R e_{1} & 0 & \cdots & 0 \\
e_{2} R e_{1} & e_{2} R e_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
e_{n-1} R e_{1} & e_{n-1} R e_{2} & \cdots & e_{n-1} R e_{n-1}
\end{array}\right)_{(n-1) \times(n-1)}, \\
M & =\left(\begin{array}{llll}
e_{n} R e_{1} & e_{n} R e_{2} & \cdots & \left.e_{n} R e_{n-1}\right)_{(n-1) \times 1}
\end{array}\right.
\end{aligned}
$$

Given any $a \in e_{n} R e_{n}$, then we check that $\left(\begin{array}{cc}0_{n-1} & 0 \\ 0 & a\end{array}\right) \in\left(\begin{array}{cc}A & 0 \\ M & e_{n} R e_{n}\end{array}\right)_{n \times n}$. So we have a potent matrix $\left(\begin{array}{cc}f & 0 \\ m & g\end{array}\right)$ and an invertible matrix $\left(\begin{array}{ll}u & 0 \\ n & v\end{array}\right)$ such that $\left(\begin{array}{ll}0 & 0 \\ 0 & a\end{array}\right)=\left(\begin{array}{cc}f & 0 \\ m & g\end{array}\right)+\left(\begin{array}{ll}u & 0 \\ n & v\end{array}\right)$. Clearly, $a=g+v$ and $v \in U\left(e_{n} R e_{n}\right)$. As $\left(\begin{array}{cc}f & 0 \\ m & g\end{array}\right)$ is potent, we can find an integer $p \geq 2$ such that $\left(\begin{array}{cc}f & 0 \\ m & g\end{array}\right)^{p}=\left(\begin{array}{cc}f & 0 \\ m & g\end{array}\right)$; hence, $g^{p}=g$. This means that $g \in e_{n} R e_{n}$ is a potent element. Therefore we show that $e_{n} R e_{n}$ is a quasi-clean ring. Likewise, $e_{1} R e_{1}, \cdots, e_{n-1} R e_{n-1}$ are quasi-clean rings.

Let $L T M_{n}(R)$ denote the ring of all $n \times n$ lower triangular matrices over $R$ and $U T M_{n}(R)$ denote the ring of all $n \times n$ upper triangular matrices over $R$. A natural problem is how to extend Theorem 3.2 to triangular matrix extensions. We now derive the following.

Theorem 3.5. Let $n$ be a positive integer. Then the following are equivalent:
(1) $R$ is a quasi-clean ring.
(2) $L T M_{n}(R)$ is a quasi-clean ring.
(3) $U T M_{n}(R)$ is a quasi-clean ring.

Proof. (1) $\Leftrightarrow$ (2). In Lemma 3.4, we choose $e_{1}=\cdots=e_{n}=1$. Then $R$ is a quasi-clean ring if and only if so is $\operatorname{LT} M_{n}(R)$.
$(1) \Leftrightarrow(3)$ is proved in the same manner.
Corollary 3.6. If $G$ is a cyclic group of order 3 , then the ring $M_{n}\left(\mathbb{Z}_{p} G\right), L T M_{n}(R)$ and $U T M_{n}\left(\mathbb{Z}_{p} G\right)$ are quasi-clean rings for all positive integers.
Proof. Let $G=\left\{1, a, a^{2}\right\}$ with $a^{3}=1$. Given any $\frac{m_{1}}{n_{1}}+\frac{m_{2}}{n_{2}} a+\frac{m_{3}}{n_{3}} a^{2}=\frac{k+l a+m a^{2}}{n} \in$ $\mathbb{Z}_{p} G$, by [10, Theorem 3.1], we have

$$
\begin{aligned}
& \frac{k+l a+m a^{2}}{n} \in \mathbb{Z}_{p} G \\
= & \begin{cases}-a^{2}+\frac{k+l a+(m+n) a^{2}}{n} & p \neq 2 ; \\
1+\frac{k-n+l a+m a^{2}}{n} & p=2, k, l, m \text { are all even; } \\
\frac{2-a-a^{2}}{3}+\frac{3 k-2 n+(3 l+n) a+(3 m+n) a^{2}}{n} & p=2, k, l, m \text { are all odd; } \\
a+\frac{k+(l-n) a+m a^{2}}{n} & p=2, \text { one of } k, l, m \\
& \text { is even, the other odd; } \\
0+\frac{k+l a+m a^{2}}{n} & \text { otherwise. }\end{cases}
\end{aligned}
$$

In the proof of [10, Theorem 3.1], the elements on the second columns at the right are all units. Clearly, the elements on the first columns at the right are all potent
elements. So $\mathbb{Z}_{p} G$ is a quasi-clean ring. Therefore we complete the proof by Theorem 3.2 and Theorem 3.5.

Corollary 3.7. Let $G$ be a cyclic group of order 3 , $A_{1} \in M_{n}\left(\mathbb{Z}_{p} G\right), A_{2} \in$ $L T M_{n}\left(\mathbb{Z}_{p} G\right)$ and $A_{3} \in U T M_{n}\left(\mathbb{Z}_{p} G\right)$. Then the following hold:
(1) There exist an idempotent matrix $E_{1} \in M_{n}(R)$ and two invertible matrices $U_{1}, V_{1} \in M_{n}(R)$ such that $A_{1}=E_{1} U_{1}+V_{1}$.
(2) There exist an idempotent matrix $E_{2} \in L T M_{n}(R)$ and two invertible matrices $U_{2}, V_{2} \in L T M_{n}(R)$ such that $A_{2}=E_{2} U_{2}+V_{2}$.
(3) There exist an idempotent matrix $E_{3} \in U T M_{n}(R)$ and two invertible matrices $U_{3}, V_{3} \in U T M_{n}(R)$ such that $A_{3}=E_{3} U_{3}+V_{3}$.

Proof. (1) In view of Corollary 3.6, we have a potent $B_{1} \in M_{n}(R)$ and an invertible matrix $V_{1} \in M_{n}(R)$ such that $A_{1}=B_{1}+V_{1}$. As $B_{1}$ is potent, there exists an integer $m \geq 2$ such that $B_{1}=B_{1}^{m}$. Set $W_{1}=B_{1}^{m-2}-B_{1}^{m-1}+I_{m}$. Then $U^{-1}=$ $B_{1}-B_{1}^{-1}+I_{m}$. Furthermore, we have $B_{1} U=B_{1}^{m-1}$. Let $E_{1}=B_{1}^{m-1}$ and $U_{1}=W_{1}^{-1}$. Then $A_{1}=E_{1} U_{1}+V_{1}$, as asserted.
(2) and (3) are proved in the same manner.

It is well known that every clean ring is an exchange ring. We note that there exists a quasi-clean ring which is not an exchange ring. Let $R=\mathbb{Z}_{(3)} \cap \mathbb{Z}_{(5)}=\{a / b \mid$ $a, b \in \mathbb{Z}, b \neq 0$ and $3 \nmid b$ and $5 \nmid b\}$. By [1, Proposition 16], each element $x \in R$ can be written in the form $x=u+e$ or $x=u-e$ where $u \in U(R)$ and $e \in R$ is an idempotent. Clearly, $\pm e \in R$ is a potent element. Hence $R$ is a quasi-clean ring. But $R$ is not an exchange ring because it is indecomposable, and not quasilocal.

## References

[1] D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and idempotent, Comm. Algebra, 30(2002), 3327-3336.
[2] P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math., 105(1998), 105-137.
[3] M. Ashraf, Structure and commutativity of associative rings in: Recent Research on Pure and Applied Algebra, O. Pordavi(Ed.), Nova Science Publishers, Inc., New York, 2003, pp. 1-8.
[4] V. P. Camillo and H. P. Yu, Exchange rings, units and idempotents, Comm. Algebra, 22(1994), 4737-4749.
[5] H. Chen, Exchange rings with artinian primitive factors, Algebra Represent. Theory, 2 (1999), 201-207.
[6] H. Chen, Units, idempotents and stable range conditions, Comm. Algebra, 29(2001), 703-717.
[7] K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra, 54(1988), 261-287.
[8] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229(1977), 269-278.
[9] W. K. Nicholson, Extensions of clean rings, Comm. Algebra, 29(2001), 2589-2595.
[10] Y. Ye, Semiclean rings, Comm. Algebra, 31(2003), 5609-5625.

