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Abstract. Weak Crossed Product Algebras correspond to certain graphs called lower
subtractive graphs. The properties of such algebras can be obtained by studying this kind
of graphs ([4], [5]). In [1], the author showed that a weak crossed product is Frobenius
and its restricted subalgebra is symmetric if and only if its associated graph has a unique
maximal vertex. A special construction of these graphs came naturally and was known as
standard lower subtractive graph. It was a deep question that when such a special graph
possesses unique maximal vertex?

This work is to answer the question partially and to give a particular characterization

for such graphs at which the corresponding algebras are isomorphic. A graph that follows

the mentioned characterization is called flexible. Flexibility is to some extend a general-

ization of the so-called Coxeter groups and its weak Bruhat ordering.

1. Introduction

Let G = Gal(K/F ) be a finite Galois group for an extension of fields K/F ,
and let f : G×G → K be a weak 2-cocycle which satisfies: for σ, τ, γ ∈ G,

(i) f(σ, τ)f(στ, γ) = fσ(τ, γ)f(σ, τγ),

(ii) f(1, σ) = f(σ, 1) = 1,

(iii) f(σ, σ−1) = 0 for σ 6= 1.

Consider a K−vector space on the basis {xσ : σ ∈ G}, and define the following
multiplications on it to make the structure into an algebra denoted by Af

(1) xσxτ = f(σ, τ)xστ ,

(2) kσxσ = xσk for k ∈ K.

This algebra is called weak crossed product. It is associative and has an identity
by (i), (ii) above [3]. If e : G × G → {0, 1} is defined by e(σ, τ) = 0 if and only if
f(σ, τ) = 0 for σ, τ ∈ G. So we get an idempotent weak 2-cocycle associated to f
whose algebra Ae is called restricted algebra over the base field F.
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Define a relation “≤” on G by σ ≤ τ ⇐⇒ f(σ−1, στ) 6= 0 (equivalently ⇐⇒
e(σ, τ) = 1). It is straightforward that this relation is partial order and can be
represented in a rooted graph. It is also satisfying

σ ≤ γ ≤ τ ⇐⇒ σ−1γ ≤ σ−1τ.

The later property is known as lower subtractivity. Intuitively, it means in the
graphical language every subgraph upstairs has a copy subgraph downstairs and
this property is powerful in proving some statements in this work, in more specific
words if things do not happen in the lower part of the graph then they can not
happen in the upper part of the graph ([3], [6]). For instance, there are nine lower
subtractive graphs defined on S3 with two generators (elements of level 1). Only
one of them is Frobenius [2].

However, one can start with a pair (G,S), a finite group G with generating
set S = {s1, s2, · · · , st} and construct a lower subtractive graph in the following
manner:

Put 1 as a root of the graph (level 0), and then put all the generators
s1, s2, · · · , st right above the identity (level 1). For level 2, every element of
s1s1, s1s2, · · · , s1st should be put right above s1 unless it appeared in level 0 or
1. The elements among s1s1, s1s2, · · · , s1st which appeared in a lower level should
be ignored. The elements s2s1, s2s2, · · · , s2st are put right above s2 except any
element appeared in a lower level. Continue in this process until the elements of G
are all exhausted. The resulting graph is lower subtractive and has the Catenary
property which means each element has a length (level) and the length is unique.
We keep the notation l(g) to indicate the length function that can be defined math-
ematically as l(1) = 0 and for g 6= 1, l(g) = min{d ∈ N : g = si1si2 · · · sid

, sij ∈ S}.
Unfortunately, not all lower subtractive graphs arise this way. These special graphs
are called standard lower subtractive graphs or briefly standard graphs and denoted
by Γ(G, S) [1]. In this work we focus on standard graphs and try to answer questions
such as

- When has Γ(G,S) a unique maximal vertex?
- When is Γ(G, S) a lattice?
- What kind of graphs one can get where the group is cyclic?
- When is the “inverse” graph isomorphic to the original?
- What are the relations between the generators and the top element?
It turned out that attacking such questions is not an easy task, so we have come

up with partial results which may open the road to more sophisticated studies.

2. Graph inverse

Definition 2.1. Let Γ(G, S) be a standard graph having a unique maximal element
γ. The inverse graph is denoted by γ−1Γ(G,S) and defined on G = {γ−1g : g ∈ G}
by

γ−1g′ ≺ γ−1g ⇐⇒ g ≤ g′ in Γ(G,S).
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Note that the graph γ−1Γ(G,S) needs to be flipped over in order to be read
regularly. We also use “≺” and “≤” to indicate the relations on γ−1Γ(G, S) and
Γ(G,S) respectively.

If the graph is standard lower subtractive with a unique maximal element, we
abbreviate that by SFG which stands for standard Frobenius graph and if it is only
lower subtractive with unique maximal element, we denote it by FG. Before going
on, we assert that the inverse graph of an FG or SFG is lower subtractive.

Proposition 2.2.

(i) The graph is an FG with maximal element γ if and only if its inverse is an
FG with unique maximal element γ−1.

(ii) The graph Γ(G,S) is an SFG with maximal element γ if and only if
γ−1Γ(G,S) is an SFG with unique maximal element γ−1. Moreover, lγ(γ−1g)
in the inverse graph is equal to l(γ)− l(g) in Γ(G,S).

Proof. (i) In γ−1Γ(G,S), suppose that γ−1α ≺ γ−1β. We need to show that γ−1α ≺
γ−1δ ≺ γ−1β if and only if α−1δ ≺ α−1β. Since γ−1α ≺ γ−1β, so β ≤ α in Γ(G,S).
Now

α−1δ ≺ α−1β

⇐⇒ γ−1γα−1δ ≺ γ−1γα−1β

⇐⇒ γα−1β ≤ γα−1δ

⇐⇒ γα−1β ≤ γα−1δ ≤ γ (since γ is the maximal element in Γ(G,S))
⇐⇒ β−1αγ−1γα−1δ ≤ β−1αγ−1γ (by lower subtractivity in Γ(G, S))
⇐⇒ β−1δ ≤ β−1α

⇐⇒ β ≤ δ ≤ α (by lower subtractivity of Γ(G,S) and β ≤ α)
⇐⇒ γ−1α ≺ γ−1δ ≺ γ−1β (by definition).

So γ−1Γ(G,S) is lower subtractive.

(ii) Part(i) is taking care of proving lower subtractivity. We first show that
γ−1Γ(G, S) = Γ(G,S−1). If l(γ) = m, and g = si1si2 · · · sim−1

lies right below γ
with length m − 1 then there is a generator s such that γ = si1si2 · · · sim−1

s and
hence γ−1g = s−1, so the set of generators of the inverse graph is precisely S−1.
If l(h) = m − 2, and h = s′i1s

′
i2
· · · s′

im−2
, then there exist two generators s′, s′′

such that γ = s′i1s
′
i2
· · · s′

im−2
s′s′′, but then γ−1h = s′′−1s′−1 and we claim that

this element in the second level in the graph γ−1Γ(G,S). To see this, notice that
if s′′−1s′−1 appears in a lower level then either s′′−1s′−1 = 1 or s′′−1s′−1 = s−1

0

for some generator s0 ∈ S. Hence γ = s′i1s
′
i2
· · · s′

im−2
or γ = s′i1s

′
i2
· · · s′

im−2
s0, so

l(γ) < m (contradiction). Same idea can be applied to show that if l(σ) = m− i in
Γ(G,S) then lγ(γ−1σ) = i in γ−1Γ(G,S). ¤
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Let e : G × G → {0, 1} be an idempotent weak 2-cocycle associated to f and
defined by e(σ, τ) = 0 if and only if f(σ, τ) = 0 for σ, τ ∈ G. So we get an F -algebra
Ae called restricted algebra over the base field F . The multiplication in Ae is given
by

xσxτ =

{
xστ σ ≤ στ

0 otherwise.

Now, if Γ(G,S) is an SFG with unique maximal element γ and associated
idempotent weak 2-cocycle e, then how is the idempotent weak 2-cocycle eγ of
γ−1Γ(G,S) related to e? The next result answers the question.

Lemma 2.3. If Γ(G,S) is an SFG with unique maximal element γ and associated
idempotent weak 2-cocycle e, then the idempotent weak 2-cocycle eγ of γ−1Γ(G,S)
is given by eγ(σ, τ) = e(γστ, τ−1), σ, τ ∈ G.

Proof. We first show that eγ is indeed 2-cocycle. This means that eγ(σ, τ)eγ(στ, δ)
= eσ

γ (τ, δ)eγ(σ, τδ) for σ, τ, δ ∈ G. Equivalently, eσ(γτδ, δ−1)e(γστδ, δ−1τ−1)
= e(γστ, τ−1)e(γστδ, δ−1). But this is true if and only if γσδ ≤ γτ and γστδ ≤
γσ ⇐⇒ γστ ≤ γσ and γστδ ≤ γστ. Since γ is the maximal element, the later
statement can be replaced by γσδ ≤ γτ ≤ γ and γστδ ≤ γσ ≤ γ ⇐⇒ γστ ≤ γσ ≤ γ
and γστδ ≤ γστ ≤ γ. Using the lower subtractivity yields δ−1 ≤ δ−1τ−1σ−1 and
τ−1 ≤ τ−1σ−1 ⇐⇒ δ−1 ≤ δ−1τ−1 and δ−1τ−1 ≤ δ−1τ−1σ−1. Thus, it is sufficient to
show that δ−1 ≤ δ−1τ−1σ−1 and τ−1 ≤ τ−1σ−1 ⇐⇒ δ−1 ≤ δ−1τ−1 ≤ δ−1τ−1σ−1 :

(⇐=) Clearly δ−1 ≤ δ−1τ−1 ≤ δ−1τ−1σ−1 implies that δ−1 ≤ δ−1τ−1σ−1 and
multiplying from the left by δ and using lower subtractivity give τ−1 ≤ τ−1σ−1.

(=⇒) We point out that the relation σ ≤ τ is equivalent -in algebra level-
to the existence of an element xg ∈ {xσ : σ ∈ G} such that xσxg = xστ ( 6= 0),
where g = τ in this case. We translate the given relations: τ−1 ≤ τ−1σ−1 =⇒
xτ−1xσ−1 = xτ−1σ−1( 6= 0) and δ−1 ≤ δ−1τ−1σ−1 =⇒ xδ−1xτ−1σ−1 = xδ−1τ−1σ−1 .
From these two equations we get xδ−1xτ−1 xσ−1 = xδ−1τ−1σ−1( 6= 0). Associativity
of the algebra Ae implies that xδ−1xτ−1 = xδ−1τ−1 6= 0 i.e., δ−1 ≤ δ−1τ−1 and
xδ−1τ−1xσ−1 6= 0 which means that δ−1τ−1 ≤ δ−1τ−1σ−1. To complete the proof,
we see that for σ, τ ∈ G : eγ(σ, 1) = e(γσ, 1) = 1 and eγ(1, τ) = e(γτ, τ−1) = 1
because it is always true that γτ ≤ γ. Finally, for σ 6= 1, eγ(σ, σ−1) = e(γ, σ) = 0,
since γ never be less than any other element. ¤

We make use of this Lemma and show a strong relation between the algebras
associated to an SFG and its inverse.

Lemma 2.4. If G is abelian, then σ ≤ στ if and only if τ ≤ στ.

Proof. Observe that both statements mean that l(στ) = l(τσ) = l(σ) + l(τ). ¤

Theorem 2.5. Let Ae, Aeγ be the algebras associated to an SFG Γ(G,S) and its
inverse graph γ−1Γ(G,S), and suppose that G is abelian. Then Ae

∼= Aeγ as F -
algebras.
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Proof. On the basis {xσ : σ ∈ G}, define the map ψ : Ae → Aeγ by
ψ(xσ) = xσ−1 , ψ(a) = a for a ∈ F. We show that ψ is homomorphism. Notice
that ψ(xσxτ ) = ψ(e(σ, τ)xστ ) = eψ(σ, τ)xτ−1σ−1 . On the other hand ψ(xσ)ψ(xτ ) =
xσ−1xτ−1 = eγ(σ−1, τ−1)xσ−1τ−1 = e(γσ−1τ−1, τ)xτ−1σ−1 (by Lemma 2.3 and
commutativity of G). Now, we must complete the proof by demonstrating that
the definition eψ(σ, τ) = e(γσ−1τ−1, τ) is consistent, i.e., taking 0 to 0 and 1
to 1. Suppose e(γσ−1τ−1, τ) = 1. So, γσ−1τ−1 ≤ γσ−1 or by maximality of
γ, γσ−1τ−1 ≤ γσ−1 ≤ γ. Lower subtractivity gives τ ≤ τσ = στ . But this happens
if and only if σ ≤ στ as Lemma 2.4 asserts. The other direction can be followed
backward. ¤

Remark 2.6. The words “Standard” and “Frobenius” are necessary in the previ-
ous theorem. Take the following examples to figure out this necessity: On Z5, let
Γ1 = Γ(Z5, {1, 2}) and Γ2 be defined by 0 ≤ 1 ≤ 2 ≤ 3, 0 ≤ 4 ≤ 3. Both are lower
subtractive, but none of them gives the above isomorphism.

3. Flexible graphs

Definition 3.1. Let Γ(G,S) be an SFG with unique maximal element γ. Then Γ
is called flexible if for all a, b ∈ G : a ≤ b ⇐⇒ a ≺ b.

Proposition 3.2.

(i) For any FG Γ(G,S) with unique maximal element γ, if T = the set of cogen-
erators = {g ∈ G : g lies right below γ}. Then |T | = |S|.

(ii) The unique maximal element in a flexible graph Γ must be of order 2. That
is, γ−1 = γ.

Proof. (i) For each s ∈ S, we have γs−1 ∈ T and for each g ∈ T, l(g) = l(γ) − 1,
so there exists s0 ∈ S such that gs0 = γ or g = γs−1

0 . This shows that T = {γs−1 :
s ∈ S}. But the mapping s 7→ γs−1 is bijective.

(ii) By the construction of the inverse graph, the unique maximal element in
γ−1Γ is γ−1. At the same time, since a ≤ γ in Γ for all a ∈ G, Definition 3.1. implies
that a ≺ γ for all a ∈ G. Therefore γ is a unique maximal element in γ−1Γ as well.
Hence γ−1 = γ or γ2 = 1. ¤

The following statement characterizes flexibility.

Theorem 3.3. Let Γ(G,S) be an SFG with unique maximal element γ. The
following statements are equivalent:

(i) Γ is flexible.

(ii) g ≤ gs ⇐⇒ g ≺ gs for all s ∈ S, g ∈ G.

(iii) S = S−1.

(iv) l(g) = l(g−1) for all g ∈ G.
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Proof. (i) =⇒ (ii): Clear from the definition of flexibility.
(ii) =⇒ (iii): Assume s−1

i /∈ S for some si ∈ S =⇒ l(s−1
i ) > 1. Now, γsi ≤

γsis
−1
i = γ. Thus, l(γsi)+l(s−1

i ) = l(γ), but since l(s−1
i ) > 1 we get l(γsi) < l(γ)−1

or there exists s ∈ S such that γsi ≤ γsis =⇒ γ−1γsis ≺ γ−1γsi or sis ≺ si. Using
(ii) yields sis ≤ si. Therefore, s−1

i = s ∈ S (contradiction). A similar method is
applicable if we assume s /∈ S−1.

(iii) =⇒ (iv): If S = S−1 and l(g) = m =⇒ g = s1s2 · · · sm (reduced expression)
=⇒ g−1 = sm−1s−1

2 · · · s−1
1 , and since s−1

i ∈ S, l(g−1) ≤ m. If l(g−1) < m this
would imply that l(g) < m so l(g−1) = m.

(vi) =⇒ (iii): For each s ∈ S, we have l(s) = l(s−1) = 1 =⇒ S−1 ⊆ S. But
|S−1| = |S|. So S−1 = S.

(iii) =⇒ (ii): Since S−1 = S, the generators of γ−1Γ(G,S) is S. Thus
γ−1Γ(G,S) = Γ(G,S). In particular g ≤ gs ⇐⇒ g ≺ gs for all s ∈ S, g ∈ G.

(ii) =⇒ (i): Let a ≤ b and l(b)−l(a) = n. So there exist generators s1, s2, · · · , sn

with a ≤ as1 ≤ as1s2 ≤ · · · ≤ as1s2 · · · sn−1 ≤ b. Apply the hypothesis to a ≤ as1

to get a ≺ as1, apply it again to as1 ≤ as1s2 in order to have as1 ≺ as1s2. Continue
to obtain a ≺ as1 ≺ as1s2 ≺ · · · ≺ as1s2 · · · sn−1 ≺ b =⇒ a ≺ b. The converse is
similar. ¤

Fig.1.

Corollary 3.4. If G is a Coxeter group with generating set S, then the graph of
the weak Bruhat ordering built on the elements of G is flexible.

Proof. In any Coxeter group we have s = s−1 for every generator s ∈ S. Hence
S = S−1. ¤

Flexibility can be fully understood from part (iii) in Theorem 3.3, and this
shows that if Γ is flexible then Γ and γ−1Γ are not only isomorphic but they are
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exactly the same if we flip the graph γ−1Γ up side down. As a result their algebras
are isomorphic (in fact, the same) by the identity map.

Example 3.4. Consider the dihedral group D4 = {s, r : s2 = r4 = 1, rs = sr3} and
construct Γ(D4, {s, r, r3}). The graph you will get is an SFG with unique maximal
element sr2, and since {s, r, r3}−1 = {s, r, r3} the graph Γ(D4, {s, r, r3}) is flexible,
so it is the same as (sr2)−1 Γ(D4, {s, r, r3}). Furthermore, their algebras are the
same although G is non-abelian.

Example 3.5. In Z8 = 〈r〉, let S = {r2, r3, r5}. Notice that Γ(Z8, S) has a
unique maximal element which is r. the inverse graph r−1Γ(Z8, S) has also a unique
maximal element r7 = r−1. Their algebras are isomorphic since Z8 is abelian.

4. Graphs on cyclic groups

One may ask when standard construction gives a unique maximal vertex? We
introduce this section which deals with such a question by some definitions.

b
2

a2 ab

Fig.2.

Definition 4.1. A rectangular shape graph is called a lattice, if the rectangle is
incomplete, we call it a broken lattice. In both cases, we call the graph a subnet. A
graph taking shape as in the Figure 1 is called a tower of thickness d and denoted
by Td. And, if the graph is merely a cycle then we call it a necklace.

It should be pointed out that if the graph has one generator, it must be a chain
and the group must be cyclic. This case is trivial, so we consider the case when the
generating set contains more than one element. Also, occasionally we may write
Γ(G, {s1, s2, · · · , sk}) → γ1, γ2, · · · , γm to indicate that the standard graph Γ which
is generated by {s1, s2, · · · , sk} has maximal elements γ1, γ2, · · · , γm. We write the
elements of cyclic groups Zn multiplicatively and denote ra by a, r2a by a2, rarb

by ab and so on.

Lemma 4.2. Let (Zn, S) be a cyclic group of order n ≥ 5 with generating set
S = {a, b}. Then,

(i) If a 6= b−1 and ak 6= bk for all k ∈ N , then Γ(Zn, S) is a subnet.

(ii) If a 6= b−1 and a2 = b2, then Γ(Zn, S) is T2.

(iii) a = b−1, then Γ(Zn, S) is a necklace.
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ba

a 2b

aba 2

a 3

Fig.3.

Proof. (i) We construct the graph and get the part in Figure 2 at the first step.
According to the hypotheses, no two of ab, a2, b2 are equal. To construct the
next level, we get a2b right above a2 and ab. Similarly, ab2 is above ab and b2.
We claim that a2b and ab2are not equal and do not equal any element in a lower
level. If so then either a = b, a2 = b or a = b2. The first equality contradicts
the choice of the generators. If the other two equalities hold simultaneously then
a2b2 = ab =⇒ (ab)2 = ab =⇒ ab = 1 =⇒ a = b−1 contradicting the assumption. If
only one of the last two equalities holds, then we still get a subnet of width 2 unless
a3 = b3 but this can not happen by the hypothesis.

(ii) We first notice that if a2 = b2 then n must be even because otherwise
we would have 2a ≡ 2b mod n or n+1

2 (2a) ≡ n+1
2 (2b)mod n which implies that

a ≡ b mod n (contradiction). So, we construct the graph based on the given equality
a2 = b2 as in Figure 3.

In the next step, we get a3 above both a2 and ab since if a3 = a2 then a = 1,
and a3 = ab =⇒ a2 = b or b2 = b =⇒ b = 1. Also, a3 6= a because this would imply
a2 = b2 = 1 and then we only have four elements in this group. A similar argument
shows that a2b lies above a2 and ab. Moreover, a3 6= a2b clearly. We continue in this
process to get finally a tower of thickness 2 with unique maximal element, namely
a

n
2 .

(iii) If a = b−1, then Zn = 〈a〉, and we do not have a net since we only have two
paths 1, a, a2, a3, · · · and 1, a−1, a−2, a−3, · · · . Catenary property forces the top of
the graph to be unique which is ak = a−k where k = n

2 . So, the order must be even
in this case, too. ¤

Corollary 4.3. If a 6= b−1 and a2 = b2 or a = b−1, then Γ(Z2n+1, {a, b}) has more
than one maximal element.

Proceeding the same way as in the proof of Lemma 4.2, one can generalize the
statement to the following

Lemma 4.4. Let (Zn, S) be a cyclic group of order n ≥ 5 with generating set
S = {a, b}. Define the width ε and the thickness δ of the graph respectively by
ε = min{k ∈ N : ak = b or bk = a} and δ = min{k ∈ N : ak = bk}. Then,

(i) If a 6= b−1 and ε < δ, then Γ(Zn, S) is a subgraph of a net (subnet).
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(ii) If a 6= b−1 and δ < ε, then Γ(Zn, S) is Tδ.

(iii) If a = b−1, then Γ(Zn, S) is a necklace.

Theorem 4.5. Let (Zn, S) be a cyclic group of order n ≥ 5 with generating set
S = {a, b}. Suppose that ε < δ. Then, Γ(Zn, S) has a unique maximal element γ if
and only if ε|n. Moreover, in this situation, Γ(Zn, S) is a lattice and γ = a−1.

Proof. With Lemma 4.4 in hand, it is sufficient to show that the mentioned subnet
is in fact complete (rectangle). If ε|n then aε = b and aε does not appear in the
graph while we see b instead. each element aibj , i < ε, j < δ appears exactly
once in a standard lexicographical order because otherwise we would have aλ = b
with λ < ε. Each of such elements above the generators and below the highest
two levels has exactly two edges coming in and two edges going out. Also we have
b

n
ε = (aε)

n
ε = an = 1, so we get a chain of powers of b, namely 1, b, b2, · · · , b

n
ε −1

which is of length n
ε . Thus we get a planer graph taking a rectangular shape with

dimensions ε and n
ε . Since the elements of Zn are exhausted by this graph, we

obtain a unique maximal element lying on the corner of the rectangle and can be
computed by multiplying b

n
ε −1 by aε−1. This gives γ = aε−1b

n
ε −1 = a−1b

n
ε = a−1.

Conversely, the hypotheses of the theorem insures that no cancellation in con-
structing the graph except for the cases aε = b, 1 = b

n
ε . Thus we obtain two paths

1, a, a2, · · · , aε−1 and 1, b, b2, · · · , b
n
ε −1 which are of length ε and n

ε respectively.
Hence ε|n. ¤

Corollary 4.6. If p > 4 is prime, then Γ(Zp, {a, b}) has at least two maximal
vertices.

Proof. If ak = bk with 1 < k < p, then p|k(a− b) which implies that p|k or p|a− b.
But both are impossible. Likewise, if ak = b−k, then a2k = 1 =⇒ p|2ka which is
also impossible since 2, k, a < p. Therefore, the condition ε < δ is automatically
satisfied and the statement of Theorem 4.5 completes the proof. ¤

Examples 4.7. (i) Γ(Z24, {1, 7}) → 20, and this graph is T4. Notice that 14 = 74

and 77 = 1, 17 = 7 =⇒ 4 = δ < ε = 7. Furthermore, 4|24.

(ii) Γ(Z27, {1, 7}) → 20, 26, and this graph has two maximal vertices because
17 = 7 and 19 = 79 =⇒ 7 = ε < δ = 9. But 7 - 27 although 9|27.

(iii) In (Z21, {1, 3}), we have 13 = 3 and 37 = 1, so ε = 3|21. Note that δ does
not exist. Hence, Γ(Z21, {1, 3}) is Frobenius and γ = 1−1 = 20.

Corollary 4.7. If the graph Γ(Zn, {a, b}) is flexible then n is even.
Proof. Flexibility of Γ(Zn, {a, b}) implies that {a, b} = {a−1, b−1} =⇒ a = a−1 and
b = b−1 or a = b−1. The first case implies that a2 = b2 = 1 and hence n = 4 and G
is not cyclic. The group in the second case is shown in Lemma 4.2(iii) to have an
even order. ¤
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