LOCALIZATION PROPERTY AND FRAMES

Young-Hwa Ha and Ju-Yeon Ryu

Abstract. A sequence $\{f_i\}_{i=1}^{\infty}$ in a Hilbert space H is said to be exponentially localized with respect to a Riesz basis $\{g_i\}_{i=1}^{\infty}$ for H if there exist positive constants r < 1 and C such that for all $i, j \in N$, $|\langle f_i, g_j \rangle| \leq Cr^{|i-j|}$ and $|\langle f_i, \tilde{g}_j \rangle| \leq Cr^{|i-j|}$ where $\{\tilde{g}_i\}_{i=1}^{\infty}$ is the dual basis of $\{g_i\}_{i=1}^{\infty}$. It can be shown that such sequence is always a Bessel sequence. We present an additional condition which guarantees that $\{f_i\}_{i=1}^{\infty}$ is a frame for H.

1. Introduction

The main feature of a basis $\{f_i\}_{i=1}^{\infty}$ in a Hilbert space H is that every $f \in H$ can be represented as a convergent series in terms of the elements $f_i: f = \sum_{i=1}^{\infty} c_i f_i$. The coefficients c_i are unique. A frame is also a sequence of elements $\{f_i\}_{i=1}^{\infty}$ in H, which allows every $f \in H$ to be written as a series like a basis. But, the corresponding coefficients are not necessarily unique. So a frame is more flexible than orthonormal basis, and it play an important role in wavelet theory.

Let H denote a separable Hilbert space. A family of elements $\{f_i\}_{i=1}^{\infty}$ in a Hilbert space H is called a **Bessel sequence** if there exists a constant $B < \infty$ such that for every $f \in H$,

$$\sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \le B \|f\|^2.$$

Received May 31, 2005. Revised June 11, 2005.

2000 Mathematics Subject Classification: 42C15, 46E99, 46B15.

Key words and phrases: frame, Bessel sequence, Riesz basis, exponentially localized.

A Bessel sequence $\{f_i\}_{i=1}^{\infty}$ is called a **frame** if it satisfies an additional condition: there exists a constant A > 0 such that for every $f \in H$,

$$A||f||^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2.$$

The numbers A, B are called **frame bounds**. If $\{f_i\}_{i=1}^{\infty}$ is a frame, then it is well-known that for every $f \in H$, $f = \sum_{i=1}^{\infty} c_i f_i$ for some coefficients $\{c_i\}_{i=1}^{\infty} \in l^2(N)$.

A family of elements $\{f_i\}_{i=1}^{\infty}$ in a Hilbert space H is called a **Riesz** basis if there exists a bounded invertible operator T on H such that for every i, $f_i = Te_i$, where $\{e_i\}_{i=1}^{\infty}$ is an orthonormal basis for H. There are well-known characterizations for Riesz bases(see [8]). For instance, it is an ω -independent frame.

It is a classical result that a sufficiently small perturbation of an orthonormal basis gives a Riesz basis(see [8]). It is also well-known that if $\{g_i\}_{i=1}^{\infty}$ is a frame with bounds A, B and a sequence $\{f_i\}_{i=1}^{\infty}$ satisfies a Paley-Wiener condition: there exist nonnegative constants λ, μ such that $\lambda + \frac{\mu}{\sqrt{A}} < 1$ and $||\sum_{i=1}^{n} c_i(f_i - g_i)|| \le \lambda ||\sum_{i=1}^{n} c_i f_i|| + \mu \left(\sum_{i=1}^{n} |c_i|^2\right)^{1/2}$ for all $c_1, c_2, \dots, c_n (n = 1, 2, \dots)$, then $\{f_i\}_{i=1}^{\infty}$ is a frame for H(see [2]). And we know that if $\{g_i\}_{i=1}^{\infty}$ is a frame and a sequence $\{f_i\}_{i=1}^{\infty}$ is quadratically close to $\{g_i\}_{i=1}^{\infty}, \sum_{i=1}^{\infty} ||f_i - g_i||^2 < \infty$, then $\{f_i\}_{i=1}^{\infty}$ is a frame sequence(see [3]). Paley-Wiener condition and quadratically closeness can be considered as perturbations. Localization of a sequence can also be considered as perturbations.

Definition 1.1. A sequence $\{f_i\}_{i=1}^{\infty}$ in a Hilbert space H is called **exponentially localized** with respect to a Riesz basis $\{g_i\}_{i=1}^{\infty}$ for H if for some positive constants r < 1 and C

$$(1.1) |\langle f_i, g_j \rangle| \le Cr^{|i-j|}$$

and

$$(1.2) |\langle f_i, \tilde{g}_i \rangle| \le Cr^{|i-j|}$$

for all positive integers i, j, where $\{\tilde{g}_i\}_{i=1}^{\infty}$ is the dual Riesz basis of $\{g_i\}_{i=1}^{\infty}$.

Note that if $\{g_i\}_{i=1}^{\infty}$ is an orthonomal basis for H then the condition (1.1) and (1.2) are identical because $\{g_i\}_{i=1}^{\infty} = \{\tilde{g}_i\}_{i=1}^{\infty}$. K. Gröchenig first defined a concept of localization of frame(see [6]). His definition and our definition are identical for the case of frames.

2. main results

We first state some of important lemmas for Bessel condition.

Lemma 2.1. For any positive constant r < 1, there exists a constant C > 0 such that

$$\sum_{l=1}^{\infty} r^{|l-k|} r^{|l-j|} \le C r^{\frac{1}{2}|k-j|}$$

for all positive integers k, j.

PROOF. Fix k,j and let $I_1=\{l\in N: |l-j|\leq \frac{1}{2}|k-j|\}$ and $I_2=N-I_1$.

If $l \in I_1$, then $|l - k| \ge \frac{1}{2}|k - j|$. Hence, we have

$$\begin{split} \sum_{l=1}^{\infty} r^{|l-k|} r^{|l-j|} &= \sum_{l \in I_1} r^{|l-k|} r^{|l-j|} + \sum_{l \in I_2} r^{|l-k|} r^{|l-j|} \\ &\leq \sum_{l \in I_1} r^{\frac{1}{2}|k-j|} r^{|l-j|} + \sum_{l \in I_2} r^{|l-k|} r^{\frac{1}{2}|k-j|} \\ &= r^{\frac{1}{2}|k-j|} \Big(\sum_{l \in I_1} r^{|l-j|} + \sum_{l \in I_2} r^{|l-k|} \Big) \\ &= C r^{\frac{1}{2}|k-j|} \end{split}$$

where
$$C = \sum_{l \in I_1} r^{|l-j|} + \sum_{l \in I_2} r^{|l-k|} < \infty$$
 since $r < 1$.

The following lemma gives a sufficient condition for the Gram matrix associated with $\{f_i\}_{i=1}^{\infty}$ to be a Bessel sequence (see [1]).

Lemma 2.2. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in a Hilbert space H, and suppose that there exists a constant B > 0 such that for every $j \in N$

$$\sum_{k=1}^{\infty} |\langle f_j, f_k \rangle| \le B.$$

Then, $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence with bound B.

Proposition 2.3. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in a Hilbert space H and $\{g_i\}_{i=1}^{\infty}$ be a Riesz basis for H. If $\{f_i\}_{i=1}^{\infty}$ is exponentially localized with respect to $\{g_i\}_{i=1}^{\infty}$; that is, for some positive constants r < 1 and C, $|\langle f_i, g_j \rangle| \leq Cr^{|i-j|}$ and $|\langle f_i, \tilde{g_j} \rangle| \leq Cr^{|i-j|}$ for all positive integers i, j, then $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence.

PROOF. By Lemma 2.2, it suffices to show that there exists a constant B>0 such that for every $j\in N$

$$\sum_{i=1}^{\infty} |\langle f_j, f_i \rangle| \le B.$$

Since $\{g_i\}_{i=1}^{\infty}$ is a Riesz basis, we can write $f_j = \sum_{l=1}^{\infty} \langle f_j, g_l \rangle \tilde{g}_l$ for every $j \in N$. Thus, by Lemma 2.1, for any $j \in N$,

$$\sum_{i=1}^{\infty} |\langle f_j, f_i \rangle| = \sum_{i=1}^{\infty} |\sum_{l=1}^{\infty} \langle f_j, g_l \rangle \langle \tilde{g}_l, f_i \rangle|$$

$$\leq \sum_{i=1}^{\infty} \sum_{l=1}^{\infty} |\langle f_j, g_l \rangle| |\langle f_i, \tilde{g}_l \rangle|$$

$$\leq C^2 \sum_{i=1}^{\infty} \sum_{l=1}^{\infty} r^{|j-l|} r^{|i-l|}$$

$$\leq D \sum_{i=1}^{\infty} r^{\frac{1}{2}|i-j|}.$$

Since $\sum_{i=1}^{\infty} r^{\frac{1}{2}|i-j|} < \infty$, setting $B = D \sum_{i=1}^{\infty} r^{\frac{1}{2}|i-j|}$, we have $\sum_{i=1}^{\infty} |\langle f_j, f_i \rangle| \leq B$.

Corollary 2.4. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in a Hilbert space H and $\{e_i\}_{i=1}^{\infty}$ be an orthonomal basis for H. If $\{f_i\}_{i=1}^{\infty}$ is exponentially localized with respect to $\{e_i\}_{i=1}^{\infty}$, then $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence.

To prove Theorem 2.7, we need the well-known fact that a diagonally dominant matrix is invertible(see [7] for proof).

Lemma 2.5. Suppose that a matrix $A = (a_{ij})_{i,j=1}^{\infty}$ defines a bounded self-adjoint operator on $l^2(N)$ and that A satisfies the condition of diagonal dominance for every $i \in N$; that is, there exists a positive constant δ such that

$$|a_{ii}| - \sum_{j:j \neq i} |a_{ij}| \ge \delta$$

for every $i \in N$. Then A is invertible on $l^2(N)$.

If $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence, we can define a bounded operators T, usually called a *pre-frame operator* associated to $\{f_i\}_{i=1}^{\infty}$:

$$T: l^{2}(N) \to H,$$
 $T\{c_{i}\}_{i=1}^{\infty} = \sum_{i=1}^{\infty} c_{i} f_{i}.$

Then its adjoint $T^*: H \to l^2(N)$ is defined by $T^*f = \{\langle f, f_i \rangle\}_{i=1}^{\infty}$ for every $f \in H$. By composing T and T^* , we obtain the frame operator S:

$$S: H \to H,$$
 $Sf = TT^*f = \sum_{i=1}^{\infty} \langle f, f_i \rangle f_i.$

If $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence, the series defining S converges unconditionally for all $f \in H$, and S is a bounded self-adjoint operator on H.

Theorem 2.6. Let $\{f_i\}_{i=1}^{\infty}$ be a Bessel sequence in a Hilbert space H and $\{g_i\}_{i=1}^{\infty}$ be a Riesz basis for H. If the matrix $\{\langle Sg_i, g_j \rangle\}_{i,j=1}^{\infty}$ is invertible on $l^2(N)$, then $\{f_i\}_{i=1}^{\infty}$ is a frame for H.

PROOF. Let $\{\tilde{g}_i\}_{i=1}^{\infty}$ be the dual Riesz basis of $\{g_i\}_{i=1}^{\infty}$. Since $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence, we need only to show that $\{f_i\}_{i=1}^{\infty}$ has a lower

frame bound. Since $\{\langle Sg_i, g_j \rangle\}_{i,j=1}^{\infty}$ is the matrix representation of S with respect to the bases $\{g_i\}_{i=1}^{\infty}$ and $\{\tilde{g}_i\}_{i=1}^{\infty}$, and it is invertible by the hypothesis, S is invertible. So, for any $f \in H$,

$$||f||^{4} = \langle f, f \rangle^{2} = \langle SS^{-1}f, f \rangle^{2} = |\sum_{i=1}^{\infty} \langle S^{-1}f, f_{i} \rangle \langle f_{i}, f \rangle|^{2}$$

$$\leq \sum_{i=1}^{\infty} |\langle S^{-1}f, f_{i} \rangle|^{2} \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2} = \langle S^{-1}f, f \rangle \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2}$$

$$\leq ||f||^{2} ||S^{-1}|| \sum_{i=1}^{\infty} |\langle f, f_{i} \rangle|^{2}.$$

Since S^{-1} is bounded, we now have

$$\frac{1}{||S^{-1}||}||f||^2 \le \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2,$$

for every $f \in H$. Therefore, $\{f_i\}_{i=1}^{\infty}$ is a frame for H.

Theorem 2.7. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in a Hilbert space H and $\{g_i\}_{i=1}^{\infty}$ be a Riesz basis for H. Suppose that $\{f_i\}_{i=1}^{\infty}$ is exponentially localized with respect to $\{g_i\}_{i=1}^{\infty}$; that is, for some positive constants r < 1 and C_1 ,

$$|\langle f_i, g_i \rangle| \le C_1 r^{|i-j|}$$

and

$$|\langle f_i, \tilde{g_i} \rangle| \le C_1 r^{|i-j|}$$

for all positive integers i, j.

If there exists a positive constant C_2 such that

$$\sum_{i=1}^{\infty} |\langle f_i, g_j \rangle|^2 \ge C_2^2$$

and

$$\sqrt{2}C_2 > \frac{1+r}{1-r}C_1,$$

then $\{f_i\}_{i=1}^{\infty}$ is a frame for H.

PROOF. By Proposition 2.3, $\{f_i\}_{i=1}^{\infty}$ is a Bessel sequence. So it suffices to show that $\{f_i\}_{i=1}^{\infty}$ has a lower frame bound. Fix i and consider

$$|\langle Sg_i, g_i \rangle| - \sum_{j:j \neq i} |\langle Sg_i, g_j \rangle|.$$

Since $\langle Sg_i, g_j \rangle = \sum_{k=1}^{\infty} \langle g_i, f_k \rangle \langle f_k, g_j \rangle$ and $\langle Sg_i, g_i \rangle = \sum_{k=1}^{\infty} |\langle g_i, f_k \rangle|^2$, we have

$$\sum_{j:j\neq i} |\langle Sg_i, g_j \rangle| = \sum_{j=1}^{\infty} |\langle Sg_i, g_j \rangle| - |\langle Sg_i, g_i \rangle|$$

$$\leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\langle g_i, f_k \rangle| |\langle f_k, g_j \rangle| - \sum_{k=1}^{\infty} |\langle g_i, f_k \rangle|^2$$

$$\leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} |\langle g_i, f_k \rangle| |\langle f_k, g_j \rangle| - C_2^2.$$

Now since $\{f_i\}_{i=1}^{\infty}$ is exponentially localized with respect to $\{g_i\}_{i=1}^{\infty}$,

$$\sum_{k=1}^{\infty} |\langle g_i, f_k \rangle| \leq C_1 \sum_{k=1}^{\infty} r^{|i-k|} = C_1 \left(\sum_{k=1}^{i-1} r^k + \sum_{k=0}^{\infty} r^k \right)$$

$$\leq C_1 \left(\frac{r}{1-r} + \frac{1}{1-r} \right) = C_1 \left(\frac{1+r}{1-r} \right),$$

and similarly

$$\sum_{j=1}^{\infty} |\langle f_k, g_j \rangle| \leq C_1 \sum_{j=1}^{\infty} r^{|j-k|}$$

$$\leq C_1 \left(\frac{1+r}{1-r}\right).$$

¿From these inequalities, we obtain

$$\sum_{i=1}^{\infty} \sum_{k=1}^{\infty} |\langle g_i, f_k \rangle| |\langle f_k, g_j \rangle| \leq C_1^2 \left(\frac{1+r}{1-r}\right)^2 \dots$$

Hence,

$$\sum_{i,j\neq i} |\langle Sg_i, g_j \rangle| \leq C_1^2 \left(\frac{1+r}{1-r}\right)^2 - C_2^2.$$

Finally,

$$|\langle Sg_i, g_i \rangle| - \sum_{j:j \neq i} |\langle Sg_i, g_j \rangle| \ge 2C_2^2 - C_1^2 \left(\frac{1+r}{1-r}\right)^2 > 0,$$

where the constants r, C_1, C_2 are independent of i. Therefore, $\{f_i\}_{i=1}^{\infty}$ is a frame for H.

As an application of our main theorem, Theorem 2.7, we show an example.

Example 2.8. Let $\{e_i\}_{i=1}^{\infty}$ be an orthonormal basis for H. Let $\{g_i\}_{i=1}^{\infty} = \{e_i\}_{i=1}^{\infty}$ and

$$f_1 = e_1,$$

 $f_i = e_i + \frac{1}{\sqrt{i+98}}e_{i-1}, \qquad i \ge 2.$

Then, for every i,

$$\begin{aligned} |\langle f_i, g_i \rangle| &= 1, \\ |\langle f_{i+1}, g_i \rangle| &= \frac{1}{\sqrt{i+99}} \le \frac{1}{10}, \\ |\langle f_j, g_i \rangle| &= 0, \qquad j \ne i, i+1, \end{aligned}$$

and

$$\sum_{j=1}^{\infty} |\langle f_j, g_i \rangle|^2 = 1 + \left(\frac{1}{\sqrt{i+99}}\right)^2 = 1 + \frac{1}{i+99} \ge 1.$$

Let $C_1 = 1, C_2 = 1, r = \frac{1}{10}$. Then,

$$\sqrt{2}C_2 = \sqrt{2} > \frac{11}{9} = \frac{1 + \frac{1}{10}}{1 - \frac{1}{10}} = \left(\frac{1+r}{1-r}\right)C_1.$$

Hence, $\{f_i\}_{i=1}^{\infty}$ is a frame for H. In fact, $\{f_i\}_{i=1}^{\infty}$ is a Riesz basis, since it is ω -independent. But, $\{f_i\}_{i=1}^{\infty}$ is not quadratically close to $\{g_i\}_{i=1}^{\infty}$ because $\sum_{i=1}^{\infty} ||f_i - g_i||^2 = \sum_{i=1}^{\infty} \frac{1}{i+98} = \infty$. So a quadratically closeness is not applicable to this example.

References

- O. Christensen, An introduction to frames and Alesz basis, Birkhäuser, Boston, 2003.
- [2] O. Christensen, A Paley-Wiener theorem for frames, Proc. Amer. Math. Soc. 123 (1995), 2199-2201.
- [3] O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), 1217-1220.
- [4] P. G. Casazza, O. Christensen, Approximation of the inverse frame opertor and applications to Gabor frames, Jounal of Approximation Theory 103 (2000), 338-356.
- [5] I. Daubechies, Ten Lectures on Wavelets, SIAM Conference Series in Applied Mathematics, SIAM, Boston, 1992.
- [6] K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame operator, J. Fourier Anal. Appl. 10 (2004), 105-132.
- [7] K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser, Boston, 2001.
- [8] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, NewYork, 1980.

Young-Hwa Ha
Department of Mathematics
Ajou University
Suwon 442-749, Korea
E-mail: yhha@ajou.ac.kr

Ju-Yeon Ryu Department of Mathematics Ajou University Suwon 442-749, Korea

E-mail: juyeonryu@ajou.ac.kr