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ON RELATIVE-INVARIANT CIRCULAR UNITS
IN FUNCTION FIELDS

HwaNvyuP JUNG

Abstract. Let K be an absolutely real abelian number field with
G = Gal(K/Q). Let E be a subfield of K and A = Gal(K/E). Let
Ck and Cg be the group of circular units of K and FE respectively.
In [G], Greither has shown that if G is cyclic then C& =Cg. In

this paper we show that the same result holds in function field case.

1. Introduction

For an absolutely abelian number field K with G = Gal(K/Q), let
Ck be the group of circular units of K defined by Sinnott in [S]. Let E
be a subficld of K and A = Gal(K/E). Let C% be the subgroup of Ck
consisting of all circular units of K which are fixed under A. It holds
that Cg C Ck and Ng,gCk C C}% C Cg. In [G], Greither has asked
the following question: “Does C,% = Cg ? 7, and has proven that if G is
cyclic, then C2 = Cg. When both K and E are cyclotomic fields, Gold
and Kim in [GK] have shown that the question holds true.

In this paper we treat the same question in function fields case. Let
A = F4[T] be the ring of polynomials over the finite field Fq and k =
F,(T). Let co be the place of k associated to (1/T). For each N €

A, one uses the Carlitz module to construct a field extension k(Ay),
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called the N-th cyclotomic function field, and its maximal real subfield
k(An)t. For the theory of cyclotomic function fields we refer to the
Rosen’s book [R, Chap.12,16]. Let K be a finite abelian extension of k
which is contained in some cyclotomic function field with G = Gal(K/k).
Let Ck be the group of circular units of K defined by Harrop in [H].
Let £ be a subfield of K and A = Gal(K/E). In [BJ], Bae and Jung
have shown that if both F and K are cyclotomic function fields, then
CI‘} = Cg. The aim of this paper is to show that if K is a real cyclic
extension over k then C2 = Cfg holds (Theorem 3.1).

2. Preparations

We keep the notations in the preceding section. In this section, we
give some basic facts of the cyclotomic function fields and circular units
in function fields. Let k% be a fixed algebraic closure of k. Then k%
becomes an A-module under the following action (called the Carlitz
module): for u € k® and N € A, define u™ = N(p + pr)(u), where the
map ¢ is defined as p(u) = u? and pr is defined as pp(u) = Tu. It is
well known that the set Ay of roots of u’¥ = 0 generates a finite abelian
extension k(Ay), called the N-th cyclotomic function field. Let k(An)*t
be the maximal real subfield of k(Ay), i.e., k(An)™T is the largest subfield
of k(An) in which the infinite place oo of k splits completely. Let ec
be the Carlitz exponential function and 7 be a fixed generator of the
lattice associated to Carlitz module. Then Ay is cyclic as an A-module
via the Carlitz module with a generator Ay = ec(#/N). The Carlitz
A-action on Ay is given as follows: Ay = ec(%4) for any A € A. There
1s a canonical isomorphism 7 : (A/NA)* ~ Gal(k(An)/k), A+ NA —
Ta; Where 74(Ay) = )\f\‘,. Let us denote by A, the set of all monic
polynomials.

Let K be a finite abelian extension of k with G = Gal(K/k). We al-

ways assume that K is contained in some cyclotomic function field. Let
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F € A4 bethe conductor of K, i.e., k(AF) is the smallest cyclotmic func-
tion field containing K. When the infinite place oo of k splits completely
in K, we call K a real extension of k. Let Ok be the integral closure
of A and Uy its unit group. For any N € Ay, let Ky = K Nk(Ayn).
Let Dy be the subgroup of K* generated by F; and {gy(A4) : A, N €
Ay with deg A < deg N}, where giy(A) = Nk(AN)/KN()‘Q)- The group
Cyx = Dy N Uk is called the group of circular units of K.

Lemma 2.1. Dy is a Z[G]-submodule of K* and it is generated by
F; U {gy(A): N, A€ Ay with A[N} as Z|G|-module.

Proof. To show that Dk is a Z[G]-module, it suffices to show that
o(gi(A)) € Dk for any 0 € G and N, A € A, with deg A < deg N. Let
78 € Gal(k(Ay)/k) be an extension of 0|k, € Gal(Kn/k). Then one

has

a(gn(A) = W/ En (TBOR)) = Niany/ien AN
= k(AN) /KN(/\IC\‘I) = QN(C)
where C = AB mod N with deg(C) < deg(N). Thus Dy is a Z[G]-
submodule of K*. Let D = gcd(N, A) and N = DN’,A = DA’. Then

one has

TA TA
My =ec(— N ) =ec(—r A ) =7 (Anr) = T4 (AR),

and s0 gy (A) = Niay)/kn (T4 (AR)) = 0 (Nkay)/xn (AR)) = o(giy (D))
for some ¢ € G. Hence Dk is generated by F; U {g)y(4) : N, A €
A, with AN} as Z[G]-module. O

For any subset S of K*, we denote by (S)zjg) the Z[G]-submodule
of K* generated by S. Any monic irreducible polynomial of A will be

called a prime element of A.

Lemma 2.2. Let V be the subgroup of k* generated by Fj; and
{P: P is a prime with P { F}. Then one has

Dk =V -{{gp(1): D € Ay with D\F}>z[c]
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Proof. For any prime P with P { F, one has K N k(Ap) = k and
Nieapy/k(Ap) = P. Thus (D) holds. For the converse we only need
to consider gy(A) with N,A € A, and A|N (by Lemma 2.1). Let
M = N/A. Since A% = Ap, one has

gn(A) = Nianyrn(Anr)
— Nk(AM)/KM(,\M)[k(/\N)=k(/\M)KN] — g;\/[(l)[k(/\N)tk(/\M)KNI_

Thus it suffices to consider g/ (1) with N € A;. Let D = gcd(F, N).
Note that Ky = k(Ay) N K = k(Ap)N K = Kp. If D = 1, then
Ky = k and gy(1) = Ngayyu(An) € V. If D # 1, then gjy(1) =
Ni(ap)/p (Ne(an)/k(ap) (AN)) € (9p(1))z(c) by [AJ, Lemma 2.3]. Thus
the proof is complete. .

Corollary 2.3.

Ck = By [[ (Uknign())zia)

D|F
= F I bWz I (GperW)is-
DIF P|F
D: not prime power P: prime

Proof. Let D € A4 be a divisor of F. If D is not a prime power,
then ¢,(1) € Ux. If D is a power of prime P, set ep = ordp(F),
then for any e < ep, we have Ape = Ny(A,cp)/k(Ape)(APer) and so
gpe(1) = gpep (1) for some a € Z[G]. Thus any element of ({g}(1) :

D e A, with D|F}),. . is of the form

Z[G)

I dbex [ gher(n)

D|F P|F
D: not prime power P: prime

for some ap,ap € Z|G]. Let Ig be the augmentation ideal of Z[G]. Note
that gpep (1) € Uk if and only if ap € Ig. Thus we get the result. [
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3. Circular units for absolutely cyclic extension K

In this section we assume that K is a real extension of k. For any

D € A, with D|F, we set g5 := g/5(1). Our main result is

Theorem 3.1. If K/k is a real cyclic extension, and £ C K Is any
subfield with A = Gal(K/E), then C§ = Cg.

Since Cg C Ck, one has Cg C C’I%. For any D € A, with D|F, let
Yok = (g}D()Z[G] and Yp g = <gg>z{G/A]. Furthermore we set Zp g =
Uk NYpk and Zp g =UgpNYpg. Then Corollary 2.3 implies that

CK = ]F; . H ZD,K, and CE = F; . H ZD,E-
D|F D|F
Lemma 3.2. Forany D € Ay with D|F, one hasYp g= Nk, /E,YD K

and ZD,E = NKD/EDZD,K'

Proof. Since g§ = NKD/ED(gg), one has Yp g = Nk, /g, YD k- If
D is not a power of prime, there is nothing to prove because Zp x =
Ypx and Zp g = Ypg. If D is a power of prime P, Nk, /g, Zp Kk C
UpeNYpg = Zpe. Conversely if z € Zpg = UgNYpe C Ypg =
Nkp/EpYD,K, then 2 = Nk g, (y) for some y € Yp k. Then y is
already unit in K, so y € Zp k. Thus Zp g = Nk, /g, ZD K- O

For any subset M of G, we denote by s(M) the element ) ., 0 of
Z[G).

Corollary 3.3. If [K : E] = ¢¢ (£ : prime, e > 1) and E is the
maximal proper subfield of K with A = Gal(K/E), then

Zr g = s(A) - Zr k (additive notation in Z[G]-module Zr k),

ZD,E = ZD,K for all D’F,D 7’2 F.

Proof. The first statement follows immediately from Lemma 3.2, be-
cause k(Ap) N K = K and k(Ap) N E = E. Suppose that D is a proper



394 H. Jung

divisor of F. By definition of conductor K is not in k(Ap), and so
k(Ap)NK = k(Ap) N E. Thus one has Zp g = Zp k. O

Lemma 3.4. Let K/k be a finite abelian extension with G =Gal(K /k).
Let E/k be a subextension of K with A = Gal(K/FE). Then the Z|G]-
modules Ck /CE and Z|G}/s(A)Z[G] have the same Z-rank [K : k] —[E :

Proof. Since Ck and Uy (resp. Cp and Ug) have the same Z-rank,
the first statement follows directly from the Dirichlet unit theorem in
function field. The second statement follows from the isomorphism
s(A)Z|G] ~ Z|G/A]. O

Proposition 3.5. Let K, E, G and A be as in Lemma 3.4. Suppose
that |A| = £ is a prime and Ck /Ck is a cyclic over Z|G]. Then one has

() Ci/Cp = Z(G)/5(A)ZIG).

(i) (Ci/Cr)® =0.
(iil) C£ C Cg.

Proof. (i) Since s(A)Cx = Ng/pCx € Cg, M = Ck/Cg is annihi-
lated by s(A). Thus M is a Z[G]/s(A)Z]|G]-module. Since M is cyclic
over Z[G], there exists a surjective homomorphism v : Z[G]/s(A)Z|G] —
M. Note that M and Z[G]/s(A)Z[G] have the same Z-rank (Lemma
3.4). Thus the kernel of v must be a finite torsion Z-submodule of
Z|G]/s(A)Z[G]. But Z[G]/s(A)Z|G) is Z-torsion free. Hence v must be
an isomorphism.

(ii) Write G = G’ x H, where |G'| is a power of ¢ and ged (¥, |H|) = 1.
Then A C G’ and Z[G']/s(A)Z[G'] ~ Z|G]/s(A)Z[G] as Z[A]-modules.
On the other hand A is the subgroup of order £ in the cyclic £-group &,
thus one has

26 /s(A)G) = 7]
with G' >~ ((ge), A ~ ((y). Here ¢, denotes a primitive n-th root of unity
in C. Therefore (Z|G']/s(A)Z[G']))? is isomorphic to the annihilator of
1 — (¢ in Z[(ge], so is zero. Thus by (i) the statement follows.
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(iii) follows immediately from (ii). O

Corollary 3.6. Let K, E and A be as in Proposition 3.5. Suppose
[K : k] is a power of a prime £ and |A| = £. Then Theorem 3.1 holds for
ECK.

Proof. 1t suffices to show that Ck /Cp is cyclic over Z[G]. By Corol-
lary 3.3, it is enough to show that Zp i is cyclic over Z[G]. Note that
Yr i is Z[G]-cyclic (generated by gK). If F is not a power of prime,
Zpk = Yrk is Z[G]-cyclic. If F is a power of prime, Zpx = Ig - Yrk.
Since G is a cyclic group, I is a Z[G]-cyclic. Thus Zrpx = Ig - Yr Kk 18
a Z[G]-cyclic. O

One may assume in the proof of Theorem 3.1 that [K : E] is a prime
¢. Furthermore a standard argument shows that C2/CE is annihilated
by ¢ = |A|. It is enough to show that

(Z[g ®CK)A =Z;®Cg.

As above write G = G’ x H, where G’ is a ¢-group and ged(|H|,£) = 1.
In addition we set K’ = K L = K% so that K is the compositum
K = K'L. For any f-adic character v of H and Z;[H]-module M, one
defines My = Z¢(1)) ®z,n M. It is well known that for any Z,[H]-

module M one has

M ~ @ My (as Zg[H]-modules),
¥

where 1 runs over all f-adic characters of H modulo Q¢-conjugation.
Now we consider M = Ci /Cg. It suffices to show that M is cyclic over
Z[G).

Proposition 3.7. For any ¢-adic character o) of H, My, is cyclic over
Ze()[G].

Proof. Let K¥ = K*'¥, Then L C K¥. Let F(3) be the conductor

of K¥. The core of the argument is now in the following lemma.
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Lemma 3.8. (Ck)y = (Cg)y(Zry),Kx)y-

Proof. We begin the proof with the following representation Cgx =
Fy-I1p|r Zp,k- Since F(¢)|F, this representation shows that (2) holds.
Note that E = (EN K')K and E N K’ is the largest proper subfield of
K'. We must show that for any D € Ay with D|F, (Zp i)y is con-
tained in the right. If K’ ¢ k(Ap), then K Nk(Ap) = (K'L)Nk(Ap) =
(K' 0 K(Ap))(L N k(Ap)) = (BN K' A k(Ap))(L 1 E(Ap)) = ((E N
KLYNk(Ap) = ENk(Ap). Thus Zp k = Zp g, and so we are done.
Now assume that K’ C k(Ap). Let T’ = kery = Gal(K/K**"¥). Then
P(s(I')) = |kery| is a unit in Zy, therefore (Zp )y = (s(I)Zp K )y.
In addition one has s(I')Zp,k C Ukap) NUkv = Ugapynxe. H T =
Gal(k(Ap) N K/k(Ap) N K'), then (Zp k )y = (s(I")Zp K )y, and cor-
responding statements holds with Y in place of Z, ie., (Ypk)y =
((Nkap)/k(Ap)nke (AD))w)zic)-

(Case 1) D is not a multiple of F(v). Then K¥ ¢ k(Ap), i.e.,
KYNk(Ap) ¢ K¥. Thus there exists ¢ € H — ker ¢ which is trivial on
K¥Nk(Ap). Since 9(0) — 1 € Zy(¥) is not zero divisor, it follows that
(Ukap)nk+)y = 0, thus (Zp )y = 0.

(Case 2) D is a multiple of F(¢). Then K¥ C k(Ap(y) € k(Ap),

and so one has
(Zp.x)y = (Uk)y N {(Niap)/ kv (AD))w)zicrs
(Zrw). v = Uk)yp D A(Nk(a gy (Are)w)zia)-

Since Nk(AD)/k(AF(¢))(/\D) is contained in (Ap(y))z(g) it follows that
(Zp,K)y C (Zp(y),k )y and lemma is proved. O

By Lemma 3.8 and the proof of Corollary 3.6, (Ck)y/(CE)y is cyclic
as surjective image of (Zp(y) g )y over Zg(¥)[G']. Therefore Proposition
3.7 and Theorem 3.1 are proved. O
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