NON-COMPACT MINIMAL SURFACES BOUNDED BY CONVEX CURVES IN PARALLEL PLANES OF R3

  • JIN, SUN SOOK (Major in Mathematics and Applies Mathematics College of Electronics and Information Kyung Hee University)
  • Received : 2005.05.03
  • Published : 2005.09.25

Abstract

In this article, we solve some kinds of non-compact Douglas-Plateau problem for two convex curves in parallel planes.

Keywords

References

  1. Ann. Scient. Ec. Norm. Sup. v.18 Curvature estimates for minimal surfaces in 3-manifolds Anderson, M.
  2. Minimal Surfaces 1 Dierkes, U.;Hildebrandt, S.;Kuster, A.;Wohlrab, O.
  3. J. Math. Phys. Maschusetts Inst. of Tech. v.10 The problem of Plateau for two contours Douglas, J.
  4. Comm. Math. Helv. v.69 On minimal annuli in a slab Fang, Yi
  5. Comm. Anal. Geom. v.8 no.4 Curvature estimates for minimal annuli and non-compact Douglas-Plateau problem Fang, Yi;Hwang, Jenn-Fang
  6. Duke. Math. v.57 A variational approach to the existence of complete embedded minimal surfaces Hoffman, D.;Meeks, W.
  7. Jour. K.M.S. Non-compact Douglas-Plateau problem Jin, S.S.
  8. Comm. K.M.S. Non-compact Douglas-Plateau problem bounded by a line and a Jordan curve Jin, S.S.
  9. Arch. Rational Mech. Anal. v.21 Variational problems of minimal surface type, 2, Boundary value problems for the minimal surface equation Jenkins, H.;Serrin, J.
  10. Comm. Math. Helv. v.66 Minimal surfaces bounded by convex curves in parallel planes Meeks, W.;White, B.
  11. Lecture Notes in Mathematics v.1775 Properly embedded minimal surfaces with finite total curvature;THE GLOBAL THEORY OF MINIMAL SURFACES IN FLAT SPACES Perez, J.;Ros, A.
  12. Abh. Konigl. d. Wiss. Gottingen, Mathem. Cl. v.13 Uber die Flache vom kleinsten Inhalt bei gegebener Begrebzung Riemann, B.
  13. Annals of Math. v.63 On surfaces of stationary area bounded by two circles, or convex curves Shiffman, M.
  14. Invent. Math. v.88 Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals White, B.