NORMAL INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALG $\mathcal L$

YOUNG SOO JO, JOO HO KANG AND DONG WAN PARK

Abstract. We investigate the equation Ax = y, where the vectors x and y are given and the operator A is normal and required to lie in CSL-algebra $Alg\mathcal{L}$. We desire a necessary and sufficient condition for the existence of a solution A.

1. Introduction

The equation Ax = y in Hilbert space has been considered by a number of authors. Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H} . An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that Tx = y. And n-vector interpolation problem asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \cdots, x_n\}$ and $\{y_1, y_2, \cdots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison[8]. In case \mathcal{U} is a nest algebra, the (one-vector) interpolation problem was solved by Lance[9]: his result was extended by Hopenwasser[4] to the case that \mathcal{U} is a CSL-algebra. Munch[10] obtained conditions for interpolation in case A is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser[5] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra. Hopenwasser's paper also contains a sufficient condition for interpolation for n-vectors.

Received July 8, 2005. Revised September 9, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47L35.

Key words and phrases : Interpolation Problem, Subspace Lattice, Normal Interpolation Problem, CSL-algebra $Alg \mathcal{L}$.

In [6], we studied the problem of finding A so that Ax = y and A is required to lie in $Alg \mathcal{L}$ for a commutative subspace lattice \mathcal{L} .

THEOREM [6]. Let \mathcal{H} be a Hilbert space and \mathcal{L} a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Then the following statements are equivalent.

(1) There is an operator A in Alg \mathcal{L} such that Ax = y and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{i=1}^{l} \alpha_i E_i y\|}{\|\sum_{i=1}^{l} \alpha_i E_i x\|} : l \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty.$$

In this paper, we consider this problem of finding a normal operator A in $Alg\mathcal{L}$ that maps x to y: Let \mathcal{L} be a commutative subspace lattice on a Hilbert space \mathcal{H} . Given vectors x and y in \mathcal{H} , when does there exist a normal operator A in $Alg\mathcal{L}$ such that Ax = y?

We establish some notations and conventions. A commutative subspace lattice \mathcal{L} , or CSL \mathcal{L} is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra and Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be vectors in a Hilbert space. Then $\langle x,y \rangle$ means the inner product of vectors x and y. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

2. Results

Let \mathcal{H} be a Hilbert space and \mathcal{L} a commutative subspace lattice of orthogonal projections acting on \mathcal{H} containing 0 and I. Then $\mathrm{Alg}\mathcal{L}$ is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all

the projections in \mathcal{L} . Let \mathcal{M} be a subset of a Hilbert space \mathcal{H} . Then $\overline{\mathcal{M}}$ means the closure of \mathcal{M} and \mathcal{M}^{\perp} the orthogonal complement of \mathcal{M} .

Let A be an operator acting on \mathcal{H} . A is normal if $AA^* = A^*A$.

THEOREM 1. Let \mathcal{H} be a Hilbert space and let \mathcal{L} a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Assume that

$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \alpha_i E_i x : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} \text{ is dense in } \mathcal{H}.$$

Then the following statements are equivalent.

(1) There is an operator A in $Alg\mathcal{L}$ such that Ax = y, A is normal and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty \text{ and}$$

there is a vector h in $\overline{\mathcal{M}}$ such that $\langle Ey, x \rangle = \langle Ex, h \rangle$ and $\langle Ey, y \rangle = \langle Eh, h \rangle$ for all E in \mathcal{L} .

Proof. If we assume that (1) holds, then by Theorem 1 [6],

$$\sup\left\{\frac{\|\sum_{i=1}^n\alpha_iE_iy\|}{\|\sum_{i=1}^n\alpha_iE_ix\|}:n\!\in\!\mathbb{N},\alpha_i\!\in\!\mathbb{C}\text{ and }E_i\!\in\!\mathcal{L}\right\}\!<\!\infty.\text{ Let }A^*x=h.\text{ Then}$$

 $h \in \overline{\mathcal{M}} \text{ and } \langle Ex, h \rangle = \langle Ex, A^*x \rangle = \langle EAx, x \rangle = \langle Ey, x \rangle \text{ and } \langle Eh, h \rangle = \langle Ex, AA^*x \rangle = \langle Ex, A^*Ax \rangle = \langle EAx, Ax \rangle = \langle Ey, y \rangle \text{ for all } E \text{ in } \mathcal{L}.$

Conversely, under the given condition, there is an operator A in \mathcal{L} such that Ax = y and every E in \mathcal{L} reduces A by Theorem 1 [6]. Since $\langle Ey, x \rangle = \langle Ex, h \rangle$,

$$\langle A(\sum_{i=1}^{n} \alpha_i E_i x), x \rangle = \langle \sum_{i=1}^{n} \alpha_i E_i y, x \rangle$$

$$= \langle \sum_{i=1}^{n} \alpha_i E_i x, h \rangle .$$

So < Af, x > = < f, h > for all f in $\overline{\mathcal{M}} = \mathcal{H}$. Since < Ag, x > = 0 = < g, h > for $g \in \overline{\mathcal{M}}^{\perp}$, $A^*x = h$. Since < Ey, y > = < Eh, h > for all E in \mathcal{L} ,

$$< A(\sum_{i=1}^{n} \alpha_{i}E_{i}x), y > = < \sum_{i=1}^{n} \alpha_{i}E_{i}Ax, y >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}y, y >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}h, h >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}A^{*}x, h >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}x, Ah > ,$$

for all $n \in \mathbb{N}$, all $\alpha_i \in \mathbb{C}$ and all $E_i \in \mathcal{L}$. So $\langle Af, y \rangle = \langle f, Ah \rangle$ for all f in $\overline{\mathcal{M}} = \mathcal{H}$. Since $\langle Ag, y \rangle = \langle g, Ah \rangle$ and $\langle Ag, y \rangle = \langle g, Ah \rangle$ for $g \in \overline{\mathcal{M}}^{\perp}$, $A^*y = Ah$. Hence $AA^*x = A^*Ax$. Since AE = EA, $A^*E = EA^*$ for all E in \mathcal{L} . Since $AA^*x = A^*Ax$, $AA^*(\sum_{i=1}^n \alpha_i E_i x) = A^*A(\sum_{i=1}^n \alpha_i E_i x)$, for all $n \in \mathbb{N}$, all $\alpha_i \in \mathbb{C}$ and all $E_i \in \mathcal{L}$. So $AA^*f = A^*Af$ for all f in $\overline{\mathcal{M}} = \mathcal{H}$. Hence $AA^* = A^*A$. \square

If we modify the proof of Theorem 1, we can prove the following theorems.

THEOREM 2. Let \mathcal{H} be a Hilbert space and let \mathcal{L} a commutative subspace lattice on \mathcal{H} . Let x and y be vectors in \mathcal{H} . Let

$$\mathcal{M} = \left\{ \sum_{i=1}^{n} \alpha_i E_i x : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\}. \text{ Assume that } Ey \text{ is in}$$

 $\overline{\mathcal{M}}$ for all E in \mathcal{L} . Then the following statements are equivalent.

(1) There is an operator A in $Alg\mathcal{L}$ such that Ax = y, A is normal and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{i=1}^{n} \alpha_i E_i y\|}{\|\sum_{i=1}^{n} \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty \text{ and there}$$

is a vector h in $\overline{\mathcal{M}}$ such that $\langle Ey, x \rangle = \langle Ex, h \rangle$ and $\langle Ey, y \rangle = \langle Eh, h \rangle$ for all E in \mathcal{L} .

Proof. $(1) \Rightarrow (2)$. By Theorem 1 [6],

$$\sup \left\{ \frac{\|\sum_{i=1}^n \alpha_i E_i y\|}{\|\sum_{i=1}^n \alpha_i E_i x\|} : n \in \mathbb{N}, \alpha_i \in \mathbb{C} \text{ and } E_i \in \mathcal{L} \right\} < \infty. \text{ Let } A^* x = h.$$

Then $\langle Ey, y \rangle = \langle Eh, h \rangle$ and $\langle Ey, x \rangle = \langle Ex, h \rangle$ for all E in \mathcal{L} . Since $\langle g, h \rangle = \langle g, A^*x \rangle = \langle Ag, x \rangle = \langle 0, x \rangle = 0$ for all g in $\overline{\mathcal{M}}^{\perp}$, h is a vector in $\overline{\mathcal{M}}$.

 $(2) \Rightarrow (1)$. Under the first condition of hypothesis, there is an operator A in Alg \mathcal{L} such that Ax = y and every E in \mathcal{L} reduces A by Theorem 1 [6]. Since $\langle Ey, x \rangle = \langle Ex, h \rangle$,

$$\langle A(\sum_{i=1}^{n} \alpha_i E_i x), x \rangle = \langle \sum_{i=1}^{n} \alpha_i E_i y, x \rangle$$

$$= \langle \sum_{i=1}^{n} \alpha_i E_i x, h \rangle .$$

Since $\langle g, h \rangle = 0$ and $\langle Ag, x \rangle = 0$ for all g in $\overline{\mathcal{M}}^{\perp}$, $A^*x = h$. Since $\langle Ey, y \rangle = \langle Eh, h \rangle$ for all E in \mathcal{L} ,

$$< A(\sum_{i=1}^{n} \alpha_{i}E_{i}x), y > = < \sum_{i=1}^{n} \alpha_{i}E_{i}Ax, y >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}y, y >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}h, h >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}A^{*}x, h >$$

$$= < \sum_{i=1}^{n} \alpha_{i}E_{i}x, Ah > .$$

Since $Ey \in \overline{\mathcal{M}}$ for all E in \mathcal{L} , $\sum_{i=1}^{n} \alpha_{i} E_{i} y \in \overline{\mathcal{M}} \cdots (i)$. Since $h \in \overline{\mathcal{M}}$, $Ah \in \overline{\mathcal{M}}$ by (i). Since < g, Ah > = 0, < Ag, y > = < g, Ah > for all g in $\overline{\mathcal{M}}^{\perp}$. Hence $A^{*}y = Ah$. So $A^{*}Ax = AA^{*}x$. Hence $A^{*}Af = AA^{*}f$ for all f in $\overline{\mathcal{M}}$. Since Ax = y and $Ey \in \overline{\mathcal{M}}$, $0 = < Ey, g > = < EAx, g > = < AEx, g > = < Ex, A^{*}g >$ for all E in \mathcal{L} and all g in $\overline{\mathcal{M}}^{\perp}$. So $A^{*}g \in \overline{\mathcal{M}}^{\perp}$ and hence $AA^{*}g = 0$ for all g in $\overline{\mathcal{M}}^{\perp}$. So $AA^{*}g = 0 = A^{*}Ag$ for all g in $\overline{\mathcal{M}}^{\perp}$. Hence $AA^{*} = A^{*}A$.

THEOREM 3. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} . Assume that

$$\mathcal{N} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\} \text{ is dense}$$

in \mathcal{H} . Then the following statements are equivalent.

$$(1)\sup\left\{\frac{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}y_i\|}{\|\sum_{k=1}^{m_i}\sum_{i=1}^{l}\alpha_{k,i}E_{k,i}x_i\|}: m_i \in \mathbb{N}, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C}\right\}$$

 $<\infty$ and there are vectors h_p 's in $\overline{\mathcal{N}}$ such that < $Ey_p, y_q>=<$ $Eh_p, h_q>$ and < $Ey_p, x_q>=<$ $Ex_p, h_q>$ for all E in \mathcal{L} and all $p, q=1, 2, \cdots, n$.

(2) There is an operator A in $Alg\mathcal{L}$ such that $Ax_k = y_k$ $(k = 1, 2, \dots, n)$, A is normal and every E in \mathcal{L} reduces A.

Proof. (1) \Rightarrow (2). Under the first condition of hypothesis, there is an operator A in Alg \mathcal{L} such that $Ax_k = y_k$ $(k = 1, 2, \dots, n)$ and every E in \mathcal{L} reduces A by Theorem 2 [6]. Since $\langle Ey_p, x_q \rangle = \langle Ex_p, h_q \rangle$ for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$,

$$< A(\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i), x_p > = < \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i, x_p >$$

$$= < \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i, h_p >,$$

 $m_i \in \mathbb{N}, \ l \leq n, \ \alpha_{k,i} \in \mathbb{C}, \ E_{k,i} \in \mathcal{L} \text{ and } p = 1, 2, \dots, n.$ So $< Af, x_p > = < f, h_p > \text{ for all } f \text{ in } \overline{\mathcal{N}} = \mathcal{H}$. Hence $A^*x_p = h_p \text{ for all } p = 1, 2, \dots, n$. Since $< Ey_p, y_q > = < Eh_p, h_q > \text{ for all } E \text{ in } \mathcal{L} \text{ and } p, q = 1, 2, \dots, n$,

$$< A(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}), y_{p} > = < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_{i}, y_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} h_{i}, h_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} A^{*} x_{i}, h_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}, Ah_{p} > ,$$

for all $m_i \in \mathbb{N}$, all $l \leq n$, $\alpha_{k,i} \in \mathbb{C}$ and all $E_{k,i} \in \mathcal{L}$. So $Af, y_p > = < f, Ah_p >$ for all f in $\overline{\mathcal{N}} = \mathcal{H}$ and all $p = 1, 2, \dots, n$. Thus $A^*y_p = Ah_p(p = 1, 2, \dots, n)$. Hence $A^*Ax_p = AA^*x_p(p = 1, 2, \dots, n)$. Since AE = EA, $A^*E = EA^*$ for all E in \mathcal{L} . Since $AA^*x_p = A^*Ax_p(p = 1, 2, \dots, n)$, $AA^*(\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i) = A^*A(\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i)$, for all $m_i \in \mathbb{N}$, $l \leq n$, $\alpha_{k,i} \in \mathbb{C}$ and $all E_{k,i} \in \mathcal{L}$. So $all A^*f = A^*Af$ for all all f in all H. Hence $all A^* = A^*A$.

 $(2)\Rightarrow (1)$. Under the conditions of hypothesis except that the operator A is normal,

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i \in \mathbb{N}, l \le n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\} < \infty$$

by Theorem 2 [6]. Let $A^*x_p=h_p(p=1,2,\cdots,n)$. Then $h_p\in \overline{\mathcal{N}}(p=1,2,\cdots,n)$ and

$$< Ex_p, h_q > = < Ex_p, A^*x_q >$$
 $= < AEx_p, x_q >$
 $= < EAx_p, x_q >$
 $= < Ey_p, x_q >$ and

$$< Eh_p, h_q > = < EA^*x_p, A^*x_q >$$
 $= < AA^*Ex_p, x_q >$
 $= < EAx_p, Ax_q >$
 $= < Ey_p, y_q >$

for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$.

THEOREM 4. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} .

$$Let \ \mathcal{N} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \ \text{and} \ E_{k,i} \in \mathcal{L} \right\}.$$

Assume that $Ey_p \in \overline{\mathcal{N}}$ for all E in \mathcal{L} and $p = 1, 2, \dots, n$.

If
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \text{ and } \alpha_{k,i} \in \mathbb{C} \right\}$$

 $<\infty$ and if there are vectors h_p 's in $\overline{\mathcal{N}}$ such that $< Ey_p, x_q > = < Ex_p, h_q >$ and $< Ey_p, y_q > = < Eh_p, h_q >$ for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$, then there is an operator A in $Alg\mathcal{L}$ such that $Ax_q = y_q$ $(q = 1, 2, \dots, n)$, A is normal and every E in \mathcal{L} reduces A.

Proof. Under the first condition of hypothesis, there is an operator A in Alg \mathcal{L} such that $Ax_p = y_p$ $(p = 1, 2, \dots, n)$ and every E in \mathcal{L} reduces A by Theorem 2 [6]. Since $\langle Ey_p, x_q \rangle = \langle Ex_p, h_q \rangle$ for all E in \mathcal{L} and all $p, q = 1, 2, \dots, n$,

$$< A(\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i), x_q > = < \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i, x_q >$$

$$= < \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i, h_q > ,$$

for all $m_i \in \mathbb{N}$, all $l \leq n$, all $\alpha_{k,i} \in \mathbb{C}$, all $E_{k,i} \in \mathcal{L}$ and $q = 1, 2, \dots, n$. Let $f \in \overline{\mathcal{N}}$ and $\{f_p\}$ be a sequence in \mathcal{N} such that $f_p \to f$. Then since $< Af_p, x_q> = < f_p, h_q>$ for all $p=1,2,\cdots, < Af, x_q> = < f, h_q>$ for all $q=1,2,\cdots,n.$ Since $< g, h_q> = 0, < Ag, x_q> = 0$ for all g in $\overline{\mathcal{N}}^{\perp}$, $A^*x_q=h_q$ for all $q=1,2,\cdots,n.$ Since $< Ey_p, y_q> = < Eh_p, h_q>$ for all E in \mathcal{L} and all $p,q=1,2,\cdots,n,$

$$< A(\sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}), y_{p} > = < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_{i}, y_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} h_{i}, h_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} A^{*} x_{i}, h_{p} >$$

$$= < \sum_{k=1}^{m_{i}} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_{i}, Ah_{p} >$$

for all $p=1,2,\cdots,n$. So $< Af, y_p> = < f, Ah_p>$ for all f in $\overline{\mathcal{N}}$ and all $p=1,2,\cdots,n$. Since $Ey_p \in \overline{\mathcal{N}}$ $(p=1,2,\cdots,n)$, $\sum_{k=1}^{m_i} \sum_{i=1}^l \alpha_{k,i} E_{k,i} y_i \in \overline{\mathcal{N}}$, for all $m_i \in \mathbb{N}$, all $l \leq n$, all $\alpha_{k,i} \in \mathbb{C}$ and all $E_{k,i} \in \mathcal{L} \cdots (ii)$. Since $< g, h_q > = 0$ for all g in $\overline{\mathcal{N}}^\perp$, $h_q \in \overline{\mathcal{N}}$ for all $q=1,2,\cdots,n$. Hence $Ah_q \in \overline{\mathcal{N}}$ by (ii). Since $< g, Ah_p > = 0$, $< Ag, y_p > = < g, Ah_p >$ for all g in $\overline{\mathcal{N}}^\perp$ and all $p=1,2,\cdots,n$. So $A^*y_p = Ah_p$ for all $p=1,2,\cdots,n$. Thus $A^*Ax_p = AA^*x_p$ for all $p=1,2,\cdots,n$ and hence $A^*Af = AA^*f$ for all f in $\overline{\mathcal{N}}$. Since $Ax_p = y_p$ and $Ey_p \in \overline{\mathcal{N}}$, $0 = < Ey_p, g > = < EAx_p, g > = < Ex_p, A^*g >$, $E \in \mathcal{L}$, $g \in \overline{\mathcal{N}}^\perp$ and $p=1,2,\cdots,n$. So $A^*g \in \overline{\mathcal{N}}^\perp$ and hence $AA^*g = 0$ for all g in $\overline{\mathcal{N}}^\perp$. Since $A^*Ag = 0$, $AA^*g = A^*Ag$ for all g in $\overline{\mathcal{N}}^\perp$. Hence $AA^* = A^*A$.

THEOREM 5. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a subspace lattice on \mathcal{H} . Let $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} .

Let
$$\mathcal{N} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}.$$

If there is an operator A in Alg \mathcal{L} such that $Ax_p = y_p$ $(p = 1, 2, \dots, n)$, A is normal and every E in \mathcal{L} reduces A, then

$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i \in \mathbb{N}, l \le n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

 $<\infty$ and there are vectors h_p 's in $\overline{\mathcal{N}}$ such that < $Ey_p, x_q>=<$ $Ex_p, h_q>$ and < $Ey_p, y_q>=<$ $Eh_p, h_q>$ for all E in \mathcal{L} and all $p, q=1, 2, \cdots, n$.

Proof. By Theorem 2[6], we can get the first part of result. Let $A^*x_q = h_q(q = 1, 2, \dots, n)$. Then $h_q \in \overline{\mathcal{N}}$ and

If we summarize Theorems 4 and 5, then we can get the following theorem.

THEOREM 6. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $x_1, \dots, x_n, y_1, \dots, y_n$ be vectors in \mathcal{H} .

Let
$$\mathcal{N} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i \in \mathbb{N}, l \leq n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}.$$

Assume that $Ey_p \in \overline{\mathcal{N}}$ for all E in \mathcal{L} and $p = 1, 2, \dots, n$. Then the following statements are equivalent.

(1) There is an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p \ (p = 1, 2, \dots, n)$, A is normal and every E in \mathcal{L} reduces A.

$$(2) \sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i \in \mathbb{N}, l \le n, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

 $<\infty$ and there are vectors h_p 's in $\overline{\mathcal{N}}$ such that $< Ey_p, x_q > = < Ex_p, h_q >$ and $< Ey_p, y_q > = < Eh_p, h_q >$, $E \in \mathcal{L}$ and all $p, q = 1, 2, \dots, n$.

If we modify the proofs of Theorems 2, 3, 4 and 5, we can prove the following theorems. So we will omit their proofs,

THEOREM 7. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} . Assume that

$$\mathcal{K} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\} \text{ is dense in}$$

- H. Then the following statements are equivalent.
- (1) There is an operator A in $Alg\mathcal{L}$ such that $Ax_n = y_n$ $(n \in \mathbb{N})$, A is normal and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

 $<\infty$ and there is a sequence $\{h_n\}$ of vectors in $\overline{\mathcal{K}}$ such that $< Ey_p, y_q> = < Eh_p, h_q>$ and $< Ey_p, x_q> = < Ex_p, h_q>$ for all E in \mathcal{L} and all $p,q=1,2,\cdots$.

THEOREM 8. Let \mathcal{H} be a Hilbert space and let \mathcal{L} be a commutative subspace lattice on \mathcal{H} . Let $\{x_n\}$ and $\{y_n\}$ be two infinite sequences of vectors in \mathcal{H} .

Let
$$\mathcal{K} = \left\{ \sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}.$$

Assume that $Ey_p \in \overline{\mathcal{K}}$, $E \in \mathcal{L}$ and all $p = 1, 2, \cdots$. Then the following statements are equivalent.

(1) There is an operator A in Alg \mathcal{L} such that $Ax_p = y_p \ (p \in \mathbb{N})$, A is normal and every E in \mathcal{L} reduces A.

(2)
$$\sup \left\{ \frac{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} y_i\|}{\|\sum_{k=1}^{m_i} \sum_{i=1}^{l} \alpha_{k,i} E_{k,i} x_i\|} : m_i, l \in \mathbb{N}, \alpha_{k,i} \in \mathbb{C} \text{ and } E_{k,i} \in \mathcal{L} \right\}$$

 $<\infty$ and there is a sequence $\{h_n\}$ of vectors in $\overline{\mathcal{K}}$ such that $< Ey_p, y_q > = < Eh_p, h_q >$ and $< Ey_p, x_q > = < Ex_p, h_q >$ for all E in \mathcal{L} and all $p, q \in \mathbb{N}$.

References

- [1] Arveson, W. B., Interpolation problems in nest algebras, J. Funct. Anal., 3 (1975), 208-233.
- [2] Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [3] Gilfeather, F. and Larson, D., Commutants modulo the compact operators of certain CSL-algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105–120.
- [4] Hopenwasser, A., The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. **29** (1980), 121-126.
- [5] Hopenwasser, A., Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33 (1989), 657–672.
- [6] Jo, Y. S. and Kang, J. H., Interpolation problems in CSL-algebra AlgL, Rocky Mountain J. Math. 33, no. 3 (2003), 903–914.
- [7] Jo, Y. S., Kang, J. H., Moore, R. L. and Trent, T. T., Interpolation in self-adjoint settings, Proc. Amer. Math. Soc. 130 (2002), 3269–3281.
- [8] Kadison, R., Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273–276.
- [9] Lance, E. C., Some properties of nest algebras, Proc. London Math. Soc. 19 (1969), 45-68.
- [10] Munch, N., Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407–418.

Young Soo Jo

Dept. of Math., Keimyung University

Daegu, Korea

Email: ysjo@kmu.ac.kr

Joo Ho Kang

Dept. of Math., Daegu University

Daegu, Korea

Email: jhkang@daegu.ac.kr

Dong Wan Park

Dept. of Math., Keimyung University

Daegu, Korea

Email: dwPark@kmu.ac.kr