DOI QR코드

DOI QR Code

Transforming Growth Factor-β: Biology and Clinical Relevance

  • YiKim, Isaac (Department of Urology, University of California at Irvine) ;
  • Kim, Moses M. (Scott Department of Urology, Baylor College of Medicine) ;
  • Kim, Seong-Jin (Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute)
  • Published : 2005.01.31

Abstract

Transforming growth factor-$\beta$ is a pleiotropic growth factor that has enthralled many investigators for approximately two decades. In addition to many reports that have clarified the basic mechanism of transforming growth factor-$\beta$ signal transduction, numerous laboratories have published on the clinical implication/application of transforming growth factor-$\beta$. To name a few, dysregulation of transforming growth factor-$\beta$ signaling plays a role in carcinogenesis, autoimmunity, angiogenesis, and wound healing. In this report, we will review these clinical implications of transforming growth factor-$\beta$.

Keywords

References

  1. Alexandrow, M. G., Kawabata, M., Aakre, M. and Moses, H. L. (1995) Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor $\beta$1. Proc. Natl. Acad. Sci. USA 92, 3239-3243 https://doi.org/10.1073/pnas.92.8.3239
  2. Arteaga, C. L., Hurd, S. D., Winnier, A. R., Johnson, M. D., Fendly, B. M. and Forbes, J. T. (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J. Clin. Invest. 92, 2569-2576 https://doi.org/10.1172/JCI116871
  3. Ashcroft, G. S., Yang, X., Glick, A. B., Weinstein, M., Letterio, J. L., Mizel, D. E., Anzano, M., Greenwell-Wild, T., Wahl, S. M., Deng, C. and Roberts, A. B. (1999) Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1, 260-266 https://doi.org/10.1038/12971
  4. Bernstein, E. F., Harisiadis, L., Salomon, G., Norton, J., Sollberg, S., Uitto, J., Glatstein, E., Glass, J., Talbot, T. and Russo, A. (1991) Transforming growth factor-beta improves healing of radiation-impaired wounds. J. Invest. Dermatol. 97, 430-434 https://doi.org/10.1111/1523-1747.ep12481258
  5. Bonniaud, P., Kolb, M., Galt, T., Robertson, J., Robbins, C., Stampfli, M., Lavery, C., Margetts, P. J., Roberts, A. B. and Gauldie, J. (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-$\beta$-mediated pulmonary fibrosis. J. Immunol. 173, 2099-2108 https://doi.org/10.4049/jimmunol.173.3.2099
  6. Chang, J., Park, K., Bang, Y.-J., Kim, W. S., Kim, D. and Kim, S.-J. (1997) Expression of transforming growth factor beta type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res. 57, 2856-2859
  7. Chouaib, S., Asselin-Paturel, C., Mami-Chouaib, F., Caignard, A. and Blay, J. Y. (1997) The host-tumor immune conflict: from immunosuppression to resistance and destruction. Immunol. Today 18, 493-497 https://doi.org/10.1016/S0167-5699(97)01115-8
  8. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., Mareel, M., Huylebroeck, D. and van Roy, F. (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol. Cell 7, 1267-1278 https://doi.org/10.1016/S1097-2765(01)00260-X
  9. Cui, W., Fowlis, D. J., Bryson, S., Duffie, E., Ireland, H., Balmain, A. and Akhurst, R. J. (1996) TGF$\beta$1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531- 542 https://doi.org/10.1016/S0092-8674(00)80127-0
  10. Czaja, M. J., Weiner, F. R., Flanders, K. C., Giambrone, M. A., Wind, R., Biempica, L. and Zern, M. A. (1989) In vitro and in vivo association of transforming growth factor-beta 1 with hepatic fibrosis. J. Cell Biol., 108, 2477-2482 https://doi.org/10.1083/jcb.108.1.1
  11. Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y. and Wang, X. F. (1995) Transforming growth factor $\beta$ induces the cyclin-dependent kinase inhibitor p21 through a p53- independent mechanism. Proc. Natl. Acad. Sci. USA 92, 5545- 5549 https://doi.org/10.1073/pnas.92.12.5545
  12. de Caestecker, M. P., Piek, E. and Roberts, A. B. (2000) Role of transforming growth factor-$\beta$ signaling in cancer. J. Natl. Cancer Inst. 92, 1388-1402 https://doi.org/10.1093/jnci/92.17.1388
  13. Derynck, R., Akhurst, R. J. and Balmain, A. (2001) TGF-$\beta$ signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129 https://doi.org/10.1038/ng1001-117
  14. Derynck, R., Goeddel, D. V., Ullrich, A., Gutterman, J. U., Williams, R. D., Bringman, T. S. and Berger, W. H. (1987) Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res. 47, 707-712
  15. Derynck, R. and Zhang, Y. E. (2003) Smad-dependent and Smadindependent pathways in TGF-$\beta$ family signalling. Nature, 425, 577-584 https://doi.org/10.1038/nature02006
  16. Ebisawa, T., Fukuchi, M., Murakami, G., Chiba, T., Tanaka, K., Imamura, T. and Miyazono, K. (2001) Smurf1 interacts with transforming growth factor-$\beta$ type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477- 12480 https://doi.org/10.1074/jbc.C100008200
  17. Ewen, M. E., Sluss, H. K., Whitehouse, L. L. and Livingston, D. M. (1993) TGF $\beta$ inhibition of Cdk4 synthesis is linked to cell cycle arrest. Cell 74, 1009-1020 https://doi.org/10.1016/0092-8674(93)90723-4
  18. Factor, V. M., Kao, C. Y., Santoni-Rugiu, E., Woitach, J. T., Jensen, M. R. and Thorgeirsson, S. S. (1997) Constitutive expression of mature transforming growth factor beta1 in the liver accelerates hepatocarcinogenesis in transgenic mice. Cancer Res. 57, 2089-2095
  19. Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., Royston, I. and Sobol, R. E. (1996) Eradication of established intracranial rat gliomas by transforming growth factor $\beta$ antisense gene therapy. Proc. Natl. Acad. Sci. USA 93, 2909-2914 https://doi.org/10.1073/pnas.93.7.2909
  20. Flanders, K. C. (2004) Smad3 as a mediator of the fibrotic response. Int. J. Exp. Pathol. 85, 47-64 https://doi.org/10.1111/j.0959-9673.2004.00377.x
  21. Flanders, K. C., Sullivan, C. D., Fujii, M., Sowers, A., Anzano, M. A., Arabshahi, A., Major, C., Deng, C., Russo, A., Mitchell, J. B. and Roberts, A. B. (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J. Pathol. 160, 1057-1068 https://doi.org/10.1016/S0002-9440(10)64926-7
  22. Furukawa, F., Matsuzaki, K., Mori, S., Tahashi, Y., Yoshida, K., Sugano, Y., Yamagata, H., Matsushita, M., Seki, T., Inagaki, Y., Nishizawa, M., Fujisawa, J. and Inoue, K. (2003) p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 38, 879-889 https://doi.org/10.1053/jhep.2003.50384
  23. Gorelik, L. and Flavell, R. A. (2000) Abrogation of TGF â signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 12, 171-181 https://doi.org/10.1016/S1074-7613(00)80170-3
  24. Gorelik, L. and Flavell, R. A. (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-$\beta$ signaling in T cells. Nat. Med. 7, 1118-1122 https://doi.org/10.1038/nm1001-1118
  25. Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., Neumann, A., Brattain, M. G., Chang, J., Kim, S. J., Kinzler, K. W., Vogelstein, B., Willson, J. K. and Markowitz, S. (1999) Mutational inactivation of transforming growth factor $\beta$ receptor type II in microsatellite stable colon cancers. Cancer Res, 59, 320-324
  26. Hannon, G. J. and Beach, D. (1994) p15$^{INK4B}$ is a potential effector of TGF-$\beta$-induced cell cycle arrest. Nature 371, 257-261 https://doi.org/10.1038/371001a0
  27. Iavarone, A. and Massague, J. (1997) Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-$\beta$ in cells lacking the CDK inhibitor p15. Nature 387, 417-422 https://doi.org/10.1038/387417a0
  28. Inman, G. J., Nicolas, F. J. and Hill, C. S. (2002) Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-$\beta$ receptor activity. Mol. Cell. 10, 283-294 https://doi.org/10.1016/S1097-2765(02)00585-3
  29. Itoh, S., Itoh, F., Goumans, M. J. and Ten Dijke, P. (2000) Signaling of transforming growth factor-a family members through Smad proteins. Eur. J. Biochem. 267, 6954-6967 https://doi.org/10.1046/j.1432-1327.2000.01828.x
  30. Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H. and Chen, R. H. (2002) TGF-$\beta$ induces apoptosis through Smadmediated expression of DAP-kinase. Nat. Cell Biol. 4, 51-58 https://doi.org/10.1038/ncb731
  31. Kavsak, P., Rasmussen, R. K., Causing, C. G., Bonni, S., Zhu, H., Thomsen, G. H. and Wrana, J. L. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF$\beta$ receptor for degradation. Mol. Cell. 6, 1365-1375 https://doi.org/10.1016/S1097-2765(00)00134-9
  32. Kim, B.-C., Lee, H.-J., Park, S. H., Lee, S., Karpova, T. S., McNally, J. G., Felici, A., Lee, D. K. and Kim. S.-J. (2004) Jab1/CSN5, a component of the COP9 signalosome, regulates transforming growth factor $\beta$ signaling by binding to Smad7 and promoting its degradation. Mol. Cell. Biol. 24, 2251-2262 https://doi.org/10.1128/MCB.24.6.2251-2262.2004
  33. Kim, S.-J., Im, Y.-H., Markowitz, S. D. and Bang, Y.-J. (2000) Molecular mechanisms of inactivation of TGF-$\beta$ receptors during carcinogenesis. Cytokine Growth Factor Rev. 11, 159- 168 https://doi.org/10.1016/S1359-6101(99)00039-8
  34. Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, A. B., Sporn, M. B., Ward, J. M. and Karlsson, S. (1993) Transforming growth factor $\beta$1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770-774 https://doi.org/10.1073/pnas.90.2.770
  35. Larisch, S., Yi, Y., Lotan, R., Kerner, H., Eimerl, S., Tony Parks, W., Gottfried, Y., Birkey Reffey, S., de Caestecker, M. P., Danielpour, D., Book-Melamed, N., Timberg, R., Duckett, C. S., Lechleider, R. J., Steller, H., Orly, J., Kim, S. J. and Roberts, A. B. (2000) A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat. Cell Biol. 2, 915-921 https://doi.org/10.1038/35046566
  36. Lu, S. L., Zhang, W. C., Akiyama, Y., Nomizu, T. and Yuasa, Y. (1996) Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res. 56, 4595-4598
  37. Madri, J. A., Pratt, B. M. and Tucker, A. M. (1988) Phenotypic modulation of endothelial cells by transforming growth factorbeta depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106, 1375-1384 https://doi.org/10.1083/jcb.106.4.1375
  38. Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., Fan, R. S., Zborowska, E., Kinzler, K. W., Vogelstein, B. and et al. (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336-1338 https://doi.org/10.1126/science.7761852
  39. Martin, J. S., Dickson, M. C., Cousins, F. M., Kulkarni, A. B., Karlsson, S. and Akhurst, R. J. (1995) Analysis of homozygous TGF beta 1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis. Ann. N. Y. Acad. Sci. 752, 300-308 https://doi.org/10.1111/j.1749-6632.1995.tb17439.x
  40. Matthews, E., Yang, T., Janulis, L., Goodwin, S., Kundu, S. D., Karpus, W. J. and Lee, C. (2000) Down-regulation of TGF- $\beta$1 production restores immunogenicity in prostate cancer cells. Br. J. Cancer 83, 519-525 https://doi.org/10.1054/bjoc.2000.1257
  41. Muraoka, R. S., Dumont, N., Ritter, C. A., Dugger, T. C., Brantley, D. M., Chen, J., Easterly, E., Roebuck, L. R., Ryan, S., Gotwals, P. J., Koteliansky, V. and Arteaga, C. L. (2002) Blockade of TGF-$\beta$ inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551-1559 https://doi.org/10.1172/JCI0215234
  42. Myeroff, L. L., Parsons, R., Kim, S.-J., Hedrick, L., Cho, K. R., Orth, K., Mathis, M., Kinzler, K. W., Lutterbaugh, J., Park, K., Bang, Y.-J., Lee, H. Y., Park, J.-G., Lynch. H. T., Roberts, A. B., Vogelstein, B. and Markowitz, S. D. (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 55, 5545-5547
  43. Nomura, M. and Li, E. (1998) Smad2 role in mesoderm formation, leftright patterning and craniofacial development. Nature 393, 786-790 https://doi.org/10.1038/31693
  44. Oft, M., Heider, K. H. and Beug, H. (1998) TGF$\beta$ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8, 1243-1252 https://doi.org/10.1016/S0960-9822(07)00533-7
  45. Oft, M., Peli, J., Rudaz, C., Schwarz, H., Beug, H. and Reichmann, E. (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev. 10, 2462-2477 https://doi.org/10.1101/gad.10.19.2462
  46. Park, K., Kim, S.-J., Bang, Y.-J., Park, J.-G., Kim, N. K., Roberts, A. B. and Sporn, M. B. (1994) Genetic changes in the transforming growth factor $\beta$ (TGF-$\beta$) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-$\beta$. Proc. Natl. Acad. Sci. USA 91, 8772-8776 https://doi.org/10.1073/pnas.91.19.8772
  47. Pasche, B., Kolachana, P., Nafa, K., Satagopan, J., Chen, Y. G., Lo, R. S., Brener, D., Yang, D., Kirstein, L., Oddoux, C., Ostrer, H., Vineis, P., Varesco, L., Jhanwar, S., Luzzatto, L., Massague, J. and Offit, K. (1999). T$\beta$R-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 59, 5678-5682
  48. Peinado, H., Quintanilla, M. and Cano, A. (2003) Transforming growth factor $\beta$-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278, 21113-21123 https://doi.org/10.1074/jbc.M211304200
  49. Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O. and Alitalo, K. (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J. Biol. Chem. 269, 6271-6274
  50. Plum, J., De Smedt, M., Leclercq, G. and Vandekerckhove, B. (1995) Influence of TGF-beta on murine thymocyte development in fetal thymus organ culture. J. Immunol. 154, 5789-5798
  51. Portella, G., Cumming, S. A., Liddell, J., Cui, W., Ireland, H., Akhurst, R. J. and Balmain, A. (1998) Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9, 393-404
  52. Reynisdottir, I., Polyak, K., Iavarone, A. and Massague, J. (1995) Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev., 9, 1831-1845 https://doi.org/10.1101/gad.9.15.1831
  53. Roberts, A. B. and Sporn, M. B. (1990). Peptide growth factors and their receptors: Handbook of Experimental Pharmacology pp. 421-472. Springer-Verlag, Heidelberg, Germany
  54. Sandhu, C., Garbe, J., Bhattacharya, N., Daksis, J., Pan, C. H., Yaswen, P., Koh, J., Slingerland, J. M. and Stampfer, M. R. (1997) Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells. Mol. Cell Biol. 17, 2458-2467
  55. Sebzda, E., Mariathasan, S., Ohteki, T., Jones, R., Bachmann, M. F. and Ohashi, P. S. (1999) Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829-874 https://doi.org/10.1146/annurev.immunol.17.1.829
  56. Shah, A. H., Tabayoyong, W. B., Kim, S. Y., Kim, S. J., Van Parijs, L. and Lee, C. (2002a) Reconstitution of lethally irradiated adult mice with dominant negative TGF-$\beta$ type II receptor-transduced bone marrow leads to myeloid expansion and inflammatory disease. J. Immunol. 169, 3485-3491 https://doi.org/10.4049/jimmunol.169.7.3485
  57. Shah, A. H., Tabayoyong, W. B., Kundu, S. D., Kim, S. J., Van Parijs, L., Liu, V. C., Kwon, E., Greenberg, N. M. and Lee, C. (2002b) Suppression of tumor metastasis by blockade of transforming growth factor $\beta$ signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res, 62, 7135-7138
  58. Shi, Y. and Massague, J. (2003) Mechanisms of TGF-$\beta$ signaling from cell membrane to the nucleus. Cell 113, 685-700 https://doi.org/10.1016/S0092-8674(03)00432-X
  59. Siegel, P. M. and Massague, J. (2003) Cytostatic and apoptotic actions of TGF-$\beta$ in homeostasis and cancer. Nat. Rev. Cancer 3, 807-821 https://doi.org/10.1038/nrc987
  60. Sun, L. and Chen, C. (1997) Expression of transforming growth Factor $\beta$ type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells. J. Biol. Chem. 272, 25367- 25372 https://doi.org/10.1074/jbc.272.40.25367
  61. Surh, C. D. and Sprent, J. (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100-103 https://doi.org/10.1038/372100a0
  62. Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C. and Urrutia, R. (1997) Overexpression of the TGF $\beta$-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J. Clin. Invest. 99, 2365-2374 https://doi.org/10.1172/JCI119418
  63. Tang, J., Nuccie, B. L., Ritterman, I., Liesveld, J. L., Abboud, C. N. and Ryan, D. H. (1997) TGF-beta down-regulates stromal IL-7 secretion and inhibits proliferation of human B cell precursors. J. Immunol. 159, 117-125
  64. Thiery, J. P. (2002) Epithelialmesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454 https://doi.org/10.1038/nrc822
  65. Torre-Amione, G., Beauchamp, R. D., Koeppen, H., Park, B. H., Schreiber, H., Moses, H. L. and Rowley, D. A. (1990) A highly immunogenic tumor transfected with a murine transforming growth factor type $\beta$1 cDNA escapes immune surveillance. Proc. Natl. Acad. Sci. USA 87, 1486-1490 https://doi.org/10.1073/pnas.87.4.1486
  66. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L. and Wrana, J. L. (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF$\beta$ receptor. Cell 95, 779-791 https://doi.org/10.1016/S0092-8674(00)81743-2
  67. Ueki, N., Nakazato, M., Ohkawa, T., Ikeda, T., Amuro, Y., Hada, T. and Higashino, K. (1992) Excessive production of transforming growth-factor $\beta$1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochim. Biophys. Acta 1137, 189-196 https://doi.org/10.1016/0167-4889(92)90092-P
  68. Wang, J., Sun, L., Myeroff, L., Wang, X., Gentry, L. E., Yang, J., Liang, J., Zborowska, E., Markowitz, S., Willson, J. K. and Brattain, M. G. (1995) Demonstration that mutation of the type II transforming growth factor $\beta$ receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J. Biol. Chem. 270, 22044-22049 https://doi.org/10.1074/jbc.270.37.22044
  69. Warner, B. J., Blain, S. W., Seoane, J. and Massague, J. (1999) Myc downregulation by transforming growth factor $\beta$ required for activation of the p15Ink4b $G_1$ arrest pathway. Mol. Cell. Biol. 19, 5913-5922
  70. Wojtowicz-Praga, S. (1997) Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J. Immunother. 20, 165-177 https://doi.org/10.1097/00002371-199705000-00001
  71. Won, J., Kim, H., Park, E. J., Hong, Y., Kim, S. J. and Yun, Y. (1999) Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor $\beta$ receptor therapy. Cancer Res. 59, 1273-1277
  72. Xu, L., Kang, Y., Col, S. and Massague, J. (2002) Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGF$\beta$ signaling complexes in the cytoplasm and nucleus. Mol. Cell 10, 271-282 https://doi.org/10.1016/S1097-2765(02)00586-5
  73. Yang, X., Chen, L., Xu, X., Li, C., Huang, C. and Deng, C. X. (2001) TGF-$\beta$/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J. Cell Biol. 153, 35-46 https://doi.org/10.1083/jcb.153.1.1
  74. Yang, X., Letterio, J. J., Lechleider, R. J., Chen, L., Hayman, R., Gu, H., Roberts, A. B. and Deng, C. (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-$\beta$. Embo J. 18, 1280-1291 https://doi.org/10.1093/emboj/18.1.1
  75. Yuan, W. and Varga, J. (2001) Transforming growth factorrepression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J. Biol. Chem. 276, 38502-38510 https://doi.org/10.1074/jbc.M107081200

Cited by

  1. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies vol.71, 2017, https://doi.org/10.1016/j.msec.2016.11.011
  2. Serum and tissue tumor growth factor β1 in children with biliary atresia vol.45, pp.9, 2010, https://doi.org/10.1016/j.jpedsurg.2010.04.007
  3. TGFβ pathobiology in the eye vol.86, pp.2, 2006, https://doi.org/10.1038/labinvest.3700375
  4. Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice vol.52, pp.11, 2011, https://doi.org/10.3109/10428194.2011.591014
  5. The Effectiveness of Tranilast in the Prevention of Posterior Capsular Opacity vol.49, pp.12, 2008, https://doi.org/10.3341/jkos.2008.49.12.1981
  6. Cytokine patterns in patients with cancer: a systematic review vol.14, pp.6, 2013, https://doi.org/10.1016/S1470-2045(12)70582-X
  7. Testicular expression of the TGF-<i>β</i>1 system and the control of Leydig cell proliferation vol.04, pp.10, 2013, https://doi.org/10.4236/abb.2013.410A4001
  8. Host gene expression in the colon of gnotobiotic interleukin-2-deficient mice colonized with commensal colitogenic or noncolitogenic bacterial strains: Common patterns and bacteria strain specific signatures vol.12, pp.9, 2006, https://doi.org/10.1097/01.mib.0000231574.73559.75
  9. Physiologie de la cicatrisation cutanée vol.4, pp.1, 2009, https://doi.org/10.1016/S1283-0143(09)70746-0
  10. Calcium phosphate biomaterials as bone drug delivery systems: a review vol.15, pp.13-14, 2010, https://doi.org/10.1016/j.drudis.2010.05.003
  11. The functional class evaluated in rheumatoid arthritis is associated with soluble TGF-β1 serum levels but not with G915C (Arg25Pro) TGF-β1 polymorphism vol.32, pp.2, 2012, https://doi.org/10.1007/s00296-010-1624-x
  12. Engineered (hep/pARG)2polyelectrolyte capsules for sustained release of bioactive TGF-β1 vol.8, pp.4, 2012, https://doi.org/10.1039/C1SM06618H
  13. Asthma susceptibility: The role of transforming growth factor β1 vol.15, pp.4, 2010, https://doi.org/10.1111/j.1440-1843.2010.01760.x
  14. Targeting matrix metalloproteases to improve cutaneous wound healing vol.10, pp.1, 2006, https://doi.org/10.1517/14728222.10.1.143
  15. Smad3-related miRNAs regulated oncogenic TRIB2 promoter activity to effectively suppress lung adenocarcinoma growth vol.7, pp.12, 2016, https://doi.org/10.1038/cddis.2016.432
  16. Transforming Growth Factor-β1 and Tumor Necrosis Factor-α are Associated with Clinical Severity and Airflow Limitation of COPD in an Additive Manner vol.192, pp.1, 2014, https://doi.org/10.1007/s00408-013-9520-2
  17. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions vol.451, pp.4, 2014, https://doi.org/10.1016/j.bbrc.2014.08.035
  18. Fisiologia della cicatrizzazione cutanea vol.6, pp.1, 2009, https://doi.org/10.1016/S1776-0313(09)70244-8
  19. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing vol.2, pp.5, 2013, https://doi.org/10.1089/wound.2012.0406
  20. Transforming Growth Factor-β Signaling Pathway Activation in Keratoconus vol.151, pp.5, 2011, https://doi.org/10.1016/j.ajo.2010.11.008
  21. Association study of inflammatory genes with rheumatic heart disease in North Indian population: A multi-analytical approach vol.174, 2016, https://doi.org/10.1016/j.imlet.2016.04.012
  22. Mesenchymal stromal cells and regulatory T cells: the Yin and Yang of peripheral tolerance? vol.91, pp.1, 2013, https://doi.org/10.1038/icb.2012.60
  23. Investigation of TGFB2 as a candidate gene in multiple sclerosis and Parkinson’s disease vol.254, pp.7, 2007, https://doi.org/10.1007/s00415-006-0414-6
  24. The Effect of Remnant Preservation on Patterns of Gene Expression in a Rabbit Model of Anterior Cruciate Ligament Reconstruction vol.176, pp.2, 2012, https://doi.org/10.1016/j.jss.2011.10.035
  25. Prolonged elevation of cytokine levels after human acute ischaemic stroke with evidence of individual variability vol.246, pp.1-2, 2012, https://doi.org/10.1016/j.jneuroim.2012.02.013
  26. ransforming growth factor β1, pituitary-specific transcriptional factor 1 and insulin-like growth factor I gene polymorphisms in the population of the Poltava clay chicken breed: association with productive traits vol.2, pp.1, 2015, https://doi.org/10.15407/agrisp2.01.067
  27. Transcriptome analysis of the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae) vol.37, pp.1, 2007, https://doi.org/10.1016/j.ibmb.2006.10.002
  28. MMPs, TIMP-2, and TGF-β1 in the cancerization of oral lichen planus vol.30, pp.9, 2008, https://doi.org/10.1002/hed.20869
  29. Cytokine gene polymorphisms in Colombian patients with systemic lupus erythematosus vol.70, pp.5, 2007, https://doi.org/10.1111/j.1399-0039.2007.00917.x
  30. Mild and efficient synthesis of new tetraketones as lipoxygenase inhibitors and antioxidants vol.23, pp.1, 2008, https://doi.org/10.1080/14756360701408754
  31. Peptide inhibitors of transforming growth factor-β enhance the efficacy of antitumor immunotherapy vol.125, pp.11, 2009, https://doi.org/10.1002/ijc.24656