Characterization of rDNAs and Tandem Repeats in the Heterochromatin of Brassica rapa

  • Lim, Ki-Byung (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • de Jong, Hans (Laboratory of Genetics, Wageningen University) ;
  • Yang, Tae-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Jee-Young (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kwon, Soo-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Jung Sun (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lim, Myung-Ho (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Jin A (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Jin, Mina (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Jin, Yong-Moon (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Kim, Seog Hyung (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Lim, Yong Pyo (Department of Horticulture, Chungnam National University) ;
  • Bang, Jae-Wook (Department of Horticulture, Chungnam National University) ;
  • Kim, Ho-Il (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration) ;
  • Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology, Rural Development Administration)
  • Received : 2005.02.07
  • Accepted : 2005.03.11
  • Published : 2005.06.30

Abstract

We describe the morphology and molecular organization of heterochromatin domains in the interphase nuclei, and mitotic and meiotic chromosomes, of Brassica rapa, using DAPI staining and fluorescence in situ hybridization (FISH) of rDNA and pericentromere tandem repeats. We have developed a simple method to distinguish the centromeric regions of mitotic metaphase chromosomes by prolonged irradiation with UV light at the DAPI excitation wavelength. Application of this bleached DAPI band (BDB) karyotyping method to the 45S and 5S rDNAs and 176 bp centromere satellite repeats distinguished the 10 B. rapa chromosomes. We further characterized the centromeric repeat sequences in BAC end sequences. These fell into two classes, CentBr1 and CentBr2, occupying the centromeres of eight and two chromosomes, respectively. The centromere satellites encompassed about 30% of the total chromosomes, particularly in the core centromere blocks of all the chromosomes. Interestingly, centromere length was inversely correlated with chromosome length. The morphology and molecular organization of heterochromatin domains in interphase nuclei, and in mitotic and meiotic chromosomes, were further characterized by DAPI staining and FISH of rDNA and CentBr. The DAPI fluorescence of interphase nuclei revealed ten to twenty conspicuous chromocenters, each composed of the heterochromatin of up to four chromosomes and/or nucleolar organizing regions.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Ananiev, E. V., Phillips, R. L., and Rines, H. W. (1998) Chromosome specific molecular organization of maize (Zea mays L.) centromeric regions. Proc. Natl. Acad. Sci. USA 95, 13073-13078
  2. Bowers, J. E., Chapman, A. B., Rong, J., and Paterson, A. H. (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433-438 https://doi.org/10.1038/nature01521
  3. Budiman, M. A., Chang, S. B., Lee, S., Yang, T. J., Zhang, H. B., et al. (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor. Appl. Genet. 108, 190-196 https://doi.org/10.1007/s00122-003-1429-3
  4. Ceccarelli, M., Morosi, L., and Cionini, P. G. (1998) Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41, 96-103 https://doi.org/10.1139/gen-41-1-96
  5. Cheng, B. F., Heneen, W. K., and Chen, B. Y. (1995) Mitotic karyotypes of Brassica campestris and Brassica alboglabra and identification of the B. alboglabra chromosome in an addition line. Genome 38, 313-319 https://doi.org/10.1139/g95-039
  6. Copenhaver, G. P., Nickel, K., Kuromori, T., Benito, M. I., Kaul, S., et al. (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468-2474 https://doi.org/10.1126/science.286.5449.2468
  7. De Jong, J. H., Fransz, P., and Zabel, P. (1999) High resolution FISH in plants - techniques and applications. Trends Plant Sci. 4, 258-263 https://doi.org/10.1016/S1360-1385(99)01436-3
  8. Fransz, P., Armstrong, S., Alonso-Blanco, A., Fischer, T. C., Torres-Ruiz, R. A., et al. (1998) Cytogenetic for the model species Arabidopsis thaliana. Plant J. 13, 867-976 https://doi.org/10.1046/j.1365-313X.1998.00086.x
  9. Fransz, P., de Jong, J. H., Lysak, M., Ruffini, C. M., and Schubert, I. (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl. Acad. Sci. USA 99, 14584–14589
  10. Fukui, K., Nakayama, S., Ohmido, N., Yoshiaki, H., and Yamabe, M. (1998) Quantitative karyo-typing of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theor. Appl. Genet. 96, 325-330 https://doi.org/10.1007/s001220050744
  11. Grellet, F., Delcasso, D., Panabieres, F., and Delseny, M. (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J. Mol. Biol. 187, 495-507 https://doi.org/10.1016/0022-2836(86)90329-3
  12. Hall, A. E., Keith, K. C., Hall, S. E., Copenhaver, G. P., and Preuss, D. (2004) The rapidly evolving field of plant centromeres. Curr. Opin. Plant Biol. 7, 108-114 https://doi.org/10.1016/j.pbi.2004.01.008
  13. Harrison, G. E. and Heslop-Harrison, J. S. (1995) Centromeric repetitive DNA sequences in the genus Brassica. Theor. Appl. Genet. 90, 157-165
  14. Hasterok, R., Jenkins, G., Langdon, T., Jones, R. N., and Maluszynska, J. (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor. Appl. Genet. 103, 486-490 https://doi.org/10.1007/s001220100653
  15. Kim, K. W., Shin, J. H., Moon, J., Kim, M., Lee, J., et al. (2003) The function of the flowering time gene AGL20 is conserved in Crucifers. Mol. Cells 16, 136-141
  16. Koo, D. H., Plaha, P., Lim, Y. P., Hur, Y. K., and Bang, J. W. (2004) A high-resolution karyotype of Brassica rapa ssp. Pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor. Appl. Genet. 109, 1346-1352 https://doi.org/10.1007/s00122-004-1771-0
  17. Koornneef, M., Fransz, P., and de Jong, J. H. (2003) Cytogenetic tools for Arabidopsis thaliana. Chromosome Res. 11, 183-194 https://doi.org/10.1023/A:1022827624082
  18. Kulak, S., Hasterok, R., and Maluszynska, J. (2002) Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers. Hereditas 136, 144-150 https://doi.org/10.1034/j.1601-5223.2002.1360209.x
  19. Lakshmikumaran, M. and Ranade, S. A. (1990) Isolation and characterization of a highly repetitive DNA of Brassica campestris. Plant Mol. Biol. 14, 447-448 https://doi.org/10.1007/BF00028781
  20. Lim, K. B., Wennekes, J., de Jong, J. H., Jacobsen, E., and van Tuyl, J. M. (2001) Karyotype analysis of Lilium longiflorum and Lilium rubellum by chromosome banding and fluorescence in situ hybridization. Genome 44, 911-918 https://doi.org/10.1139/gen-44-5-911
  21. Maluszynska, J. and Heslop-Harrison, J. S. (1993) Physical mapping of rDNA loci in Brassica species. Genome 36, 774-781 https://doi.org/10.1139/g93-102
  22. Moens, P. B. (1964) A new interpretation of meiotic prophase in Lycopersicon esculentum (tomato). Chromosoma 15, 231- 242 https://doi.org/10.1007/BF00321508
  23. Olin-Fatih, M. (1996) The morphology, cytology, and C-banded karyotypes of Brassica campestris, B. oleracea and B. napus plants regenerated from protoplasts. Theor. Appl. Genet. 93, 414-420 https://doi.org/10.1007/BF00223184
  24. Olin-Fatih, M. and Heneen, W. K. (1992) C-banded karyotypes of Brassica campestris, Brassica oleracea and Brassica napus. Genome 35, 583-589 https://doi.org/10.1139/g92-087
  25. Osborn, T. C., Kole, C., Parkin, I. A. P., Sharp, A. G., and Kuiper, M. (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146, 1123-1129
  26. Röbbelen, G. (1960) Beiträge zur analyse des Brassica-genoms. Chromosoma 11, 205-228 https://doi.org/10.1007/BF00328652
  27. Schrader, O., Budahn, H., and Ahne, R. (2000) Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus sativus and Brassica napus by double fluorescence in situ hybridization. Theor. Appl. Genet. 100, 665-669 https://doi.org/10.1007/s001220051337
  28. Schueler, M. G., Higgins, A. W., Rudd, M. K., Gustashaw, K., and Willard, H. F. (2001) Genomic and genetic definition of a functional human centromere. Science 294, 109-115 https://doi.org/10.1126/science.1065042
  29. Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., et al. (2000) PipMaker - A web server for aligning two genomic DNA sequences. Genome Res. 10, 577-586 https://doi.org/10.1101/gr.10.4.577
  30. Snowdon, R. J., Friedrich, T., Friedt, W., and Kohler, W. (2002) Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor. Appl. Genet. 104, 533-538 https://doi.org/10.1007/s00122-001-0787-y
  31. Trask, B. (1999) Florescence in situ hybridization; in Genome Analysis: A Laboratory Manual Vol. 4 Mapping Genomes, Birren, B., Green, E. D., Hieter, P., Klapholz, S., Myers, R. M., Riethman, H., and Roskams, J. (eds.), pp. 391–404, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  32. U, N. (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389-452
  33. Xia, X., Rocha, P. S., Selvaraj, G., and Bertrand, H. (1993) Structure and evolution of a highly repetitive DNA sequence from Brassica napus. Plant Mol. Biol. 21, 213-224 https://doi.org/10.1007/BF00019938
  34. Xia, X., Rocha, P. S., Selvaraj, G., and Bertrand, H. (1994) Genomic organization of the repetitive DNA in Brassica juncea. Plant Mol. Biol. 26, 817-832 https://doi.org/10.1007/BF00028851
  35. Yang, Y. W., Tseng, P. F., Tai, P. Y., and Chang, C. J. (1998) Phylogenetic position of Raphanus in relation to Brassica species based on 5S rDNA spacer sequence data. Bot. Bull. Acad. Sin. 39, 153-160
  36. Yang, T. J., Kim, J. S., Lim, K. B., Kwon, S. J., Kim, J. A., et al. (2005) The Korea Brassica genome project: current status and prospect. Comp. Fuct. Genomics (in press)