Effect of Hydraulic Retention Time on Fermentative Hydrogen and Byproducts Production from Food Waste

음식물쓰레기 발효 시 수리학적 체류시간에 따른 수소 및 부산물 생성 특성

  • Kim, Sang-Hyoun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 김상현 (한국과학기술원 건설 및 환경공학과) ;
  • 신항식 (한국과학기술원 건설 및 환경공학과)
  • Published : 2005.12.30

Abstract

Hydrogen fermentation from food waste was attempted at different hydraulic retention time(HRT, 18-42 h). A continuous reactor fed with ground, alkali-treated and diluted food waste(average VS 4.4%) exhibited stable hydrogen production during 126 days. Hydrogen production depended on HRT, resulting in the maximum values of 25.8 mL $H_2/g\;VS_{added}$, 0.36 mol $H_2/mol\;hexose_{added}$ and 0.91 L $H_2/L/d$ at HRT 30 h. n-Butyrate and isopropanol production increased with hydrogen production increased, while acetate production decreased. The fermentation efficiency ranged from 53.3 to 65.7%, which implied that hydrogen fermentation would substitute conventional acidogenesis of food waste.

음식물 쓰레기로부터의 연속 수소 생성 실험을 다양한 수리학적 체류시간(HRT; 18, 21, 24, 30, 36, 42 h)에서 수행하였다. 음식물쓰레기는 분쇄와 알칼리 처리를 거쳐 27.0 g COD/L(average VS 4.4%)의 농도로 fed-batch 형태로 주입되었으며, 반응조 내의 pH는 $5.3{\pm}0.1$ 이상으로 유지되었다. 126일 간의 운전을 통해 유기성 폐기물로부터의 연속 수소 생성이 안정적으로 진행될 수 있음을 확인하였다. 수소 생성 효율은 HRT에 따라 변하였으며, 30 h에서 가장 높은 수치를(25.8 mL $H_2/g\;VS_{added}$, 0.36 mol $H_2/mol\;hexose_{added}$, 0.91 L $H_2/L/d$) 보였다. 대부분의 조건에서 가장 양이 많은 부산물은 노말부티르산이었으며, 수소생성이 증가함에 따라 노말부티르산의 생성이 증가하였다. 이소프로판을 역시 수소 생성과 관련이 있는 나타났다. 반면, 아세트산의 생성량은 수소생성과 반대되는 경향을 보여 수소 소모 아세트산 생성 경로로 발생되는 양이 많았다고 사료된다. 한편 산발효 효율은 $53.3{\sim}65.7%$인 것으로 나타나 기존 산 발효를 수소발효가 대체할 수 있음을 확인하였다.

Keywords

References

  1. Levin, D. B., L. Pitt, and M. Love (2004), Biohydrogen production: prospects and limitations to practical application, Int. J. Hydrogen Energy 29, 173-185 https://doi.org/10.1016/S0360-3199(03)00094-6
  2. Hallenbeck, P. C. and J. R. Benemann (2002), Biological hydrogen production; fundamentals and limiting processes, Int. J. Hydrogen Energy 27, 1185-1193 https://doi.org/10.1016/S0360-3199(02)00131-3
  3. Lay, J.-J. (2001), Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose, Biotechnol. Bioeng. 74, 280-287 https://doi.org/10.1002/bit.1118
  4. Ministry of Environment (2004), 2002 State of waste generation and treatment, 11-1480083-000198-01, Gwacheon, Korea (in Korean)
  5. Kim, S.-H., S.-K. Han, and H.-S. Shin (2004), Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge, Int. J. Hydrogen Energy 29, 1607-1616 https://doi.org/10.1016/j.ijhydene.2004.02.018
  6. Hawkes, F. R., R. Dinsdale, D. L. Hawkes and I. Hussy (2002), Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
  7. Noike, T., H. Takabatake, O. Mizuno, and M. Ohba (2002), Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria, Int. J. Hydrogen Energy 27, 1367-1371 https://doi.org/10.1016/S0360-3199(02)00120-9
  8. Oh, Y.-K., S. H. Kim, M.-S. Kim, and S. Park (2004), Thermophilic biohydrogen production from glucose with trickling biofilter, Biotechnol. Bioeng. 88, 690-698 https://doi.org/10.1002/bit.20269
  9. Kim, S.-H., S.-K. Han, and H.-S. Shin (2006), Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter, Process Biochem. 41, 199-207 https://doi.org/10.1016/j.procbio.2005.06.013
  10. APHA/AWWA/WEF (1998), Standard methods for the examination of Water and Wastewater, 20th ed., Washington, D.C., USA
  11. Satnsung Engineering CO., Ltd. (2004), The study of production and utilization of hydrogen from biomass, Report for the Ministry of Commerce, Industry and Energy, Korea (in Korean)
  12. Fan, K.-S., N.-r Kan, and J.-j. Lay (2006), Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR, Bioresource Technol. 97(1), 84-89 https://doi.org/10.1016/j.biortech.2005.02.014
  13. Hussy, I., F. R. Hawkes, R. Dinsdale, and D. L. Hawkes (2003), Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora, Biotechnol. Bioeng. 84, 619-626 https://doi.org/10.1002/bit.10785
  14. Mitchell, W. J. (1998), Physiology of carbohydrate to solvent conversion by clostridia, Adv. Microb Physiol. 39, 31-130 https://doi.org/10.1016/S0065-2911(08)60015-6
  15. Han, S.-K. and H.-S. Shin (2002), Enhanced acidogenic fermentation of food waste in a continuous-flow reactor, Waste Manage. Res. 20, 110-118 https://doi.org/10.1177/0734242X0202000202