Thermophilic Biohydrogen Production from Glucose with a Long-term Operation of CSTR

CSTR의 장기운전을 통한 포도당으로부터의 고온 수소생산

  • Ahn, Yeong-Hee (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Oh, You-Kwan (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Sung-Hoon (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 안영희 (한국과학기술원 생명화학공학과) ;
  • 오유관 (부산대학교 화학생명공학과) ;
  • 박성훈 (부산대학교 화학생명공학과)
  • Published : 2005.12.30

Abstract

Thermophilic $H_2$ was produced for 1 year using a bench-scale continuous stirred tank reactor(CSTR). The CSTR was inoculated with anaerobically digested sludge after heat treatment and fed with a glucose-based medium. The reactor showed relatively short start-up period(30 days) and high maximal $H_2$ yield(2.4 mol $H_2/mol$ glucose). Keeping pH 5.0 or less suppressed methanogenic activity. Bacteria affiliated with Thermoanaerobacterium thermosaccharolyticum kept being dominant from approximately 40 days as determined by DGGE. Environmental perturbation(pH or temperature) caused the decrease of biomass concentration in the reactor and the instability of reactor performance, $H_2$ production rate and $H_2$ yield. The unstable performance was accompanied with high concentration of lactate in the effluent. Taken together, the poor recovery of CSTR after perturbations could be partly explained by low biomass concentration and/or metabolic shift of the major population in the CSTR.

1. $H_2$ 생산속도와 $H_2$ 수율의 안정화를 근거로 판단컨대 start-up 기간은 30일 이내로 나타나 중온 CSTR에 비해 짧은 편이었다. 2. 고온 CSTR의 최고 $H_2$ 수율은 2.4 mol $H_2/mol$ glucose로 나타나 보고 된 중온의 것에 비해 우수한 편에 속하였다. 3. 운전 초기에 $CH_4$이 발생하였으나 14일 이후부터는 pH를 5.0 이하로 유지하면 거의 검출되지 않는 것으로 봐서 메탄생성균이 식종균에 남아 있더라도 반응기 운전 조건을 통해 $CH_4$ 발생을 억제할 수 있었다. 4. 고온 CSTR은 초기 운전 후에 적용한 운전조건의 변화(유입 포도당 농도, pH, 및 온도)에 민감한 것으로 나타났다. 특히 pH 및 온도변화에 대해 $H_2$ 생산속도와 $H_2$ 수율, 포도당 제거율 면에서 반응기 성능의 감소 및 불안정이 나타나, 운전 조건 변화 후에 나타난 고온 CSTR의 성능회복이 쉽지 않음을 알 수 있었다. 5. 문헌에 보고 된 중온 CSTR과는 달리 고온 CSTR는 일정한 조건에서도 불안정 한 성능을 나타내기도 하였다. 6. 불안정한 반응기 성능은 lactate 농도 증가와 더불어 n-butyrate와 acetate 농도 감소를 동반하였다. 생산된 n-butyrate와 acetate의 농도는 lactate의 농도변화와 반대의 경향을 나타내었다. 7. 비교적 긴 HRT와 침전조를 이용한 biomass의 재순환에도 불구하고, 유입 포도당의 농도가 낮아 biomass 농도는 다른 중온 반응기에서 보고된 것에 비해 낮은 편이었다. 8. T. thermosaccharolyticum와 계통발생학적으로 관련된 개체군이 반응기 운전 후 약 40일부터 우점으로 나타나 반응기 성능과 상관없이 그 이후로 계속 우세한 것으로 나타났다.

Keywords

References

  1. Das, D. and T. N. VezirogIu (2001), Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy 26, 13-28 https://doi.org/10.1016/S0360-3199(00)00058-6
  2. Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa (2004), Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends Biotechnol. 22, 477-485 https://doi.org/10.1016/j.tibtech.2004.07.001
  3. Nath, K. and D. Das (2004), Improvement of fermentative hydrogen production: various approaches, Appl. Microbiol. Biotechnol. 65, 520-529
  4. Zinder, S. H. (1990), Conversion of acetic acid to methane by thermophiles, FEMS Microbiol. Rev. 75, 125-138 https://doi.org/10.1111/j.1574-6968.1990.tb04090.x
  5. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002), Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
  6. van Groenestijn, J. W., J. H. O. Hazewinkel, M. Nienoord, and P. J. T. Bussmann (2002), Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range, Int. J. Hydrogen Energy 27, 1141-1147 https://doi.org/10.1016/S0360-3199(02)00096-4
  7. Oh, Y.-K., S.H. Kim, M.-S. Kim, and S. Park (2004), Thermophilic biohydrogen production from glucose with trickling biofilter, Biotechnol. Bioeng. 88, 690-698 https://doi.org/10.1002/bit.20269
  8. American Public Health Association (1995), Standard methods for examination of water and wastewater. 19th ed. American Public Health Association, Washington DC, VSA
  9. Ahn, Y, E.-J. Park, Y.K. Oh, S. Park, G. Webster, and A. J. Weightman (2005), Biofilm microbial community of a thermophilic trickling biofilter used for continuous biohydrogen production, FEMS Microbiol. Lett. 249, 31-38 https://doi.org/10.1016/j.femsle.2005.05.050
  10. Ahn, Y., Y.-K. Oh, and S. Park (2005), Molecular analysis of microorganisms in a thermophilic CSTR used for continuous biohydrogen production, Kor. J. Biotechnol. Bioeng. 20, 428-434
  11. Lee, C. K. and Z. J. Ordal (1967), Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum, J. Bacteriol. 94, 530-536
  12. Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi (2001), Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora, J. Biosci. Bioeng. 92, 397-400 https://doi.org/10.1263/jbb.92.397
  13. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy (2002), Sustainable fermentative hydrogen production: challenges for process optimization, Int. J. Hydrogen Energy 27, 1339-1347 https://doi.org/10.1016/S0360-3199(02)00090-3
  14. Ueno, Y., S. Haruta, M. Ishii, and Y Igarashi (2001), Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost, Appl. Microbiol. Biotechnol. 57, 555-562 https://doi.org/10.1007/s002530100806
  15. Liu, H., T. Zhang, and H. H. Fang (2003), Thermophilic $H_2$production from a cellulose-containing wastewater, Biotechnol. Lett. 25, 365-369 https://doi.org/10.1023/A:1022341113774
  16. Shin, H.-S. and J-.H. Yoon (2005), Conversion of food waste into hydrogen by thermophilic acidogenesis, Biodegradation 16, 33-44 https://doi.org/10.1007/s10531-004-0377-9