Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool (Department of Molecular Medicine, Kyungpook National University School of Medicine)
  • Published : 2005.12.31

Abstract

Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

Keywords

References

  1. Sci. Am. v.215 Atherosclerosis Spain, D.M. https://doi.org/10.1038/scientificamerican0866-48
  2. Circ. Res. v.53 Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress Zarins, C.K.;Giddens, D.P.;Bharadvaj, B.K.;Sottiurai, V.S.;Mabon, R.F.;Glagov, S. https://doi.org/10.1161/01.RES.53.4.502
  3. Progress in Biophysics and Molecular Biology v.81 Fluid shear stress and the vascular endothelium: for better and for worse Resnick, N.;Yahav, H.;Shay-Salit, A.;Shushy, M.;Schubert, S.;Zilberman, L.C.M.;Wofovitz, E.
  4. Lab Invest v.85 The role of shear stress in the pathogenesis of atherosclerosis Cunningham, K.S.;Gotlieb, A.I. https://doi.org/10.1038/labinvest.3700299
  5. Circ. Res. v.78 Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells Ayajiki, K.;Kindermann, M.;Hecker, M.;Fleming, I.;Busse, R. https://doi.org/10.1161/01.RES.78.5.750
  6. Surgery v.116 Cyclic strain increases endothelial nitric oxide synthase activity Awolesi, M.A.;Widmann, M.D.;Sessa, W.C.;Sumpio, B.E.
  7. Nature v.399 Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation Dimmeler, S.;Fleming, I.;Fisslthaler, B.;Hermann, C.;Busse, R.;Zeiher, A.M. https://doi.org/10.1038/21224
  8. Circ. Res. v.89 Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways Davis, M.E.;Cai, H.;Drummond, G.R.;Harrison, D.G. https://doi.org/10.1161/hh2301.100806
  9. Am. J. Physiol. Cell Physiol. v.285 Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases Boo, Y.C.;Jo, H. https://doi.org/10.1152/ajpcell.00122.2003
  10. J. Cell Sci. v.117 eNOS at a glance Sessa, W.C. https://doi.org/10.1242/jcs.01165
  11. J. Biol. Chem. v.277 Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A Boo, Y.C.;Sorescu, G.;Boyd, N.;Shiojima, I.;Walsh, K.;Du, J.;Jo, H. https://doi.org/10.1074/jbc.M108789200
  12. Am. J. Physiol. Heart Circ. Physiol. v.283 Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase Adependent mechanism Boo, Y.C.;Hwang, J.;Sykes, M.;Michell, B.J.;Kemp, B.E.;Lum, H.;Jo, H. https://doi.org/10.1152/ajpheart.00214.2002
  13. Free Radic. Biol. Med. v.35 Endothelial NO synthase phosphorylated at SER635 produces NO without requiring intracellular calcium increase. Boo, Y.C.;Sorescu, G.P.;Bauer, P.M.;Fulton, D.;Kemp, B.E.;Harrison, D.G.;Sessa, W.C.;Jo, H. https://doi.org/10.1016/S0891-5849(03)00397-6
  14. J. Biol. Chem. v.277 Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635 Michell, B.J.;Harris, M.B.;Chen, Z.P.;Ju, H.;Venema, V.J.;Blackstone, M.A.;Huang, W.;Venema, R.C.;Kemp, B.E. https://doi.org/10.1074/jbc.M205144200
  15. J. Biol. Chem. v.274 Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner Fujio, Y.;Walsh, K. https://doi.org/10.1074/jbc.274.23.16349
  16. Proc. Natl. Acad. Sci. USA v.89 Mutations in the catalytic subunit of cAMP-dependent protein kinase result in unregulated biological activity Orellana, S.A.;McKnight, G.S.
  17. Nature v.399 Regulation of endothelium-derived nitric oxide production by the protein kinase Akt Fulton, D.;Gratton, J.P.;McCabe, T.J.;Fontana, J.;Fujio, Y.;Walsh, K.;Franke, T.F.;Papapetropoulos, A.;Sessa, W.C. https://doi.org/10.1038/21218
  18. J. Biol. Chem. v.280 Flow Shear Stress Stimulates Gab1 Tyrosine Phosphorylation to Mediate Protein Kinase B and Endothelial Nitric-oxide Synthase Activation in Endothelial Cells Jin, Z.G.;Wong, C.;Wu, J.;Berk, B.C. https://doi.org/10.1074/jbc.M500294200
  19. Curr. Opin. Genet. Dev. v.8 Mechanism of activation and function of protein kinase B Alessi, D.R.;Cohen, P. https://doi.org/10.1016/S0959-437X(98)80062-2
  20. Nature v.437 A mechanosensory complex that mediates the endothelial cell response to fluid shear stress Tzima, E.;Irani-Tehrani, M.;Kiosses, W.B.;Dejana, E.;Schultz, D.A.;Engelhardt, B.;Cao, G.;DeLisser, H.;Schwartz, M.A. https://doi.org/10.1038/nature03952
  21. Biochem. J. v.361 Endothelial nitric oxide synthase activity is linked to its presence at cell-cell contacts Govers, R.;Bevers, L.;de Bree, P.;Rabelink, T.J. https://doi.org/10.1042/0264-6021:3610193
  22. Arterioscler. Thromb. Vasc. Biol. v.24 PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation Dusserre, N.;L'Heureux, N.;Bell, K.S.;Stevens, H.Y.;Yeh, J.;Otte, L.A.;Loufrani, L.;Frangos, J.A. https://doi.org/10.1161/01.ATV.0000141133.32496.41
  23. J. Cell Sci. v.118 Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells Fleming, I.;Fisslthaler, B.;Dixit, M.;Busse, R. https://doi.org/10.1242/jcs.02541
  24. J. Histochem. Cytochem. v.52 Colocalization of eNOS and the catalytic subunit of PKA in endothelial cell junctions: a clue for regulated NO production Heijnen, H.F.;Waaijenborg, S.;Crapo, J.D.;Bowler, R. P.;Akkerman, J.W.;Slot, J.W.
  25. Circ. Res. v.88 Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity Fleming, I.;Fisslthaler, B.;Dimmeler, S.;Kemp, B.E.;Busse, R. https://doi.org/10.1161/hh1101.092677
  26. J. Biol. Chem. v.277 Dephosphorylation of endothelial nitric-oxide synthase by vascular endothelial growth factor. Implications for the vascular responses to cyclosporin A Kou, R.;Greif, D.;Michel, T. https://doi.org/10.1074/jbc.M204519200
  27. J. Biol. Chem. v.278 Compensatory phosphorylation and protein-protein interactions revealed by loss Bauer, P.M.;Fulton, D.;Boo, Y.C.;Sorescu, G.P.;Kemp, B.E.;Jo, H.;Sessa, W.C. https://doi.org/10.1074/jbc.M211926200