
병행 프로그래밍에서 상속 이상의 구현에 관한 연구 53

병행 프로그래밍에서 상속 이상의 구현에 관한 연구
論 文

54P-1-9

A Study on the Implementation of Inheritance Anomaly in Concurrent

Programming

曺 明 絃
†
 ‧ 李 明 彦

*

(Myung-Hyun Cho․Myung-Un Lee)

Abstract - When concurrency is integrated to programming language, problem more than inheritance remains yet.

Because more than inheritance happens by collision or cross fire between synchronization and inheritance of same time

object,when synchronization code is not detached properly from method code about same time object, it makes expanded

of code to make derivation class change synchronization code of super class and method code.

In this paper, minimize right of inheritance method, When subclass is introduced to new synchronization limitation

condition, wish to solve problem more than inheritance of three types that happen in same time programming embodying

C++ class that do so that can avoid alteration of method reed.

Key Words : synchronization code, first in first out, b-buf, lb-buf, BoundedBuf

✝
교신저자, 正會員 : 瑞逸大學 電氣工學科 副敎授․工博

 E-mail : cmhyun01@mail.seoil.ac.kr
*
 正 會 員 : 瑞逸大學 電氣工學科 兼任敎授․工博

 接受日字 : 2004年 11月 12日

 最終完了 : 2005年 2月 19日

1. Introduction

Inheritance inherits attribute or composition element of

class that one class is different.

Relation between class can appear by class structure,

and subclass can inherit attribute of super class, or add

and define new attribute.

In case composition element name of super class is

same with composition element name of subclass, collision

can arise, andchange high position element name in other

name this time, and can redefine in super class in other

form in subclass about method.But, more than inheritance

happens by conflict between concurrency and concurrency

when wish to keep synchronization limitation condition of

same time object in same time programming language

including concurrency. So that method that is defined

subclass and super class executes different work, to

subclass finance of when define subclass because can not

grasp easily method action of subclass by super class in

class high a hierarchy structure if become in addition of

new method limitation for conditionality.

Synchronization happen, and redefine because can not

use method that is defined in super class just as it is in

subclass must.

Maintenance uses easy C++ language in this paper,

wish to solve problem more than inheritance by

embodying class that do to offer advantage that can do to

minimize re-right of inherited method.

2. Theoretical ancient temple more than inheritance

2.1 Justice

When more than inheritance wishes to keep

synchronization limitation condition of same time object, is

phenomenon that happen by conflict between concurrency

and concurrency, when method of super class is not

inherited entirely, synchronization code of super class and

method code happen when should be changed by

extension of synchronization code that synchronization

code for same time object creates derivation class in case

was not segmentalized properly in method code.

Do to redefine method that method that is added to

subclass by occurrence more than inheritance is inherited

fromsuper class, and method that when inherit code of

same time object by re-justice, capsulation of class can

break, and is inherited can not reuse.

2.2 Type more than inheritance

Object is described to state set that presumption is

available, and set of state is segmentalized to subset

called accept-set according to synchronization limitation

condition of object. When new method is added to

subclass, necessity that accept-set divides accept-set of

super class because synchronization limitation condition of

new method can not express definitely state of super

class occurs.

電氣學會論文誌 54P卷 1號 2005年 3月

54

The following is first in first out(FIFO) border buffer

that is embodied by action abstract picture way.

 2.2.1 Division something wrong of permission state

Fig. 4.4 of [1] is x-buf2 class that more than division

of permission state happens[1].

X-buf2 that is class b-buf's subclass get2 () that is

get () put () instance variable in and out, and new

method that is inherited from b-buf class compose.

Method get () is similar except that get2 () action

removes oldest element two at the same time within

buffer of x-buf2 class.If add get2 () that remove two

element in X-buf2 class, because element more than only

one must distinguish state of whether exist to buffer buf

or do not exist, accept-set partial should be segmentalized

in x-one and x-partial state. Therefore, get () put ()

because should be redefined and what of method except

initialization is not inherited bysubclass x-buf2 in b-buf

class more than division of permission state happen.

 2.2.2 Past susceptibility something wrong of

permission state

Fig. 4.8 of [1] is inherited from b-buf and it is method

gget () added subclassgb-buf[1].

Get () is equal almost by method that gget () action

has one exception that can not be permited immediately

since put () call. Because exception condition for these

method call can not discriminate set of instance variable

method guard and class b-buf, extra instance variable

‘After-put’ To need, and establish or re-establish value of

new variable because can not define in variable that is

inherited from class b-buf ‘After-put’ Add, and get ()

put () everybody finance of do must .

More than past susceptibility of permission state

happens thereby.

 2.2.3 Alteration something wrong of permission state

Fig. 4.9 of [1] is lock and lb-buf class[1].

Lock's method practice changes state set that method

that is inherited from parents can be called.

Lock class is abstraction mixing class, and direct

instances are not created in lock class. But, should be

mixed in class that purpose of lock class is different to

add fastening ability of object. When Lock is mixed with

b-buf for lb-buf's creation, because may not influence in

justiceof method that state of object is different about

method lock and unlock object present ‘Locked’ Is it state

‘Unlocked’ Instance variable that display whether is state

'Locked' Add must .

It is because distinction of lock and unlock that is two

states of object is impossible, put () get () inherited

method ‘Locked’

For examination of state finance of because must

become more than alteration of permission state happen.

3. Design of C++ class

These chapter design C++ class to solve problem more

than inheritance of three types.

Designed C++ class is consisted of guard, body, and

transition part.

Body part is code that achieve method and approaches

directly in interior state of object, guard part is examined

before execute body part by Boolean declarer who depend

on instance variable value and method benevolent person

aboutstate of object.

Transition part is set that is made by Boolean

expression and list of two interface methods, and

transition declarer is evaluated after method body's

practice.

3.1 BoundedBuf class

Fig. 1 is justice of BoundedBuf class that is FIFO

border buffer that design.

Each method of class defined in class to handle

instance variable. Become means to evaluate GetGuard ()

putGuard () guard declarer, and is method to achieve

work that handle state of getBody () putBody () object.

Two instance variable rear and front are pointer

variable that store cell to buffer buf and use when

remove.

Public part declared interface method get () put () of

BoundedBuf class.

In case is very Get () getGuard (), achieving getBody

(), put () is similar.

class BoundedBuf {
 protected:
 const int SIZE;
 int buf[SIZE];
 int rear, front;
 bool getGuard() {

return front != rear; }
 int getBody(bool) {

int res = buf[front++];
front %= SIZE;
return res; }

 bool putGuard() {
 return ((rear - front) % SIZE) < (SIZE -

1));}
 bool putBody(int args) {

buf[rear++] = args;
rear %= SIZE;
return true; }

 public: void get() {
 if (getGuard()) getBody(bool); }
 void put() {
 if (putGuard()) putBody(args); }
 }

 Fig. 1 BoundedBuf class

Trans. KIEE. Vol. 54P, No. 1. MAR. 2005

병행 프로그래밍에서 상속 이상의 구현에 관한 연구 55

3.2 Get2Buf class

Fig. 2 is Get2Buf class that add get2 () that remove

the oldest two cell in buffer buf to solvemore than

division of permission state.

This is that add get2 () because it is impossible that

call and achieves series get () of pair.

Two body and guard part defined in get2Guard ()

subclass that confirm that cell more than at least two

exists to buffer buf before permit get2Body () practice. If

getGuard () result bears, can remove two element

consecutively achieving get2Body () because cell more

than at least two exists within buffer.

class Get2Buf : BoundedBuf {
 bool get2Guard() {
 return ((rear - front) % SIZE) >

1; }
 pair(int, int) get2Body(bool) {

int temp1 = front;
front++;
front %= SIZE;
int temp2 = front;
front++;
front %= SIZE;
return create_pair(buf[temp1],

buf[temp2]); }
public:
 void get2() {
 if (get2Guard()) get2Body(bool);

}
 }

 Fig. 2 Get2Buf class

3.3 GgetBuf class

Justice of GgetBuf class to solve more than past

susceptibility of permission state is same with Fig. 3.

Added get () gget () that gouge GgetBuf.

Achieve according to state offered after get () put ()

practice to enable () disable () transition part that is

GgetBuf's member function. After put () practice

according to Gget () transition disable do, and after get ()

practiceenable because is done gget () achievement control

can. Therefore, need not to redefine put () get (), for

past state ‘After-put’ More than past susceptibility of

permission state does not happen without adding instance

variable that is.

class GgetBuf : BoundedBuf {
 public:
 void gget() {
 if (getGuard())
 getBody(bool);
 put.disable(gget);
 get.enable(gget); }
}

 Fig. 3 GgetBuf class

3.4 LockBuf class

Justice of LockBuf class to solve more than alteration

of permission state is same with Fig. 4.

Lock () and unlock () of new LockBuf class added.

Achieving lockBody () according to Lock () lockGuard

() achievement result relevant method to do lock.

Lock () transition part all methods that except unlock

() to do disable method be not achieved make. And

unlockGuard () lock disturbs concurrency of done object,

and unlock () transitions part methods to do enable

method in state that achievement is possible make.

class LockBuf: BoundedBuf {

 protedted:

 bool lockGuard() const {

return true; }

 bool lockBody(bool) {

return true; }

 bool unlockGuard() const {

return true; }

 bool unlockBody(bool) {

 return true; }

 public:

 bool locked(false);

 bool lock() {

 if (lockGuard()) lockBody(bool); }

 bool unlock() {

 if (unlockGuard()) { unlockBody(bool);

 lock.disableAll();

 lock.enable(unlock);

 unlock.enableAll(); }

 }

 }

 Fig. 4 LockBuf class

4. Simulation and assay

Simulation for C++ class that design to solve problem

more than inheritance achieved using standard C++

language in NT, embodied following substance to

foundation.

First, for same time achievement of simulation, created

thread that request achievement of method that is

definedin each class. thread did achievement request order

of method as is different whenever achieve simulation

using function that generate random number.

Second, achieved several reconsideration simulations to

request method and produce various result for visual point

that achieve. Because simulation result is same with table

1 and request about each method achievement is random

from table 1, request order of method appears as is

different whenever achieve simulation.

Attached serial numbers via request time of method,

and request expresses thread’s method request time.

Exe_start and Exe_end express achievement beginning

time of method and achievement end time each, and unit

電氣學會論文誌 54P卷 1號 2005年 3月

56

is tic counter value (1/1000) during standard time.

Buf_state each method achieve that display state since

and buffer buf defined by circulation system queue that

can store 10 cell . And cost of each element stored within

buffer is wave and value (proper move) after have

achieved method.

Table 1 Achievement result of each methods (Unit : tick)

Requst

method
Req

Exe_

start

Exe_

end

Buf_state

0 1 2 3 4 5 6 7 8 9

1 put 406 406 406 10

2 get2 408 - - 10

3 put 408 416 416 10 20

4 gget 412 - - 10 20

5 get2 414 426 426

6 get 422 - -

7 gget 424 - -

8 put 426 456 456 30

9 get 428 456 456

10 gget 434 - -

11 get2 434 - -

12 get 436 - -

Before early state and achievement of each method that

is defined in class that design / state transition about

great kindness state relation with table 2, Fig. 5 same.

table 2 relationship ‘State’ being state after have run early

situation and each method, ‘ _ ’ relevant method displays

that was not achieved.

State transition for table 2 cover of Fig. 5 is relation

diagram.

Table 2 State transition table of between state and method

 Method

State
Unlock() Lock() Put() Get() Get2()

Gg

et()

S0 S0 S1 S3 S2 - -

S1 S0 S1 - - - -

S2 S0 S1 S3 S2 S2 S2

S3 S0 S1 S3 S2 S2 -

S0

S3

S2

S1

 lock()

unloock()

put() get()
get2()

put()

get()
get2()
gget()

put()

get()

 lock()

 lock()

Fig. 5 Method and state transition diagram

When cell more than two exists to buffer from table 1,

by get2 () achievement is possible, and without redefining

put () get () when achieve get2 () in Get2Buf class that

add get2 () by this achieve reusing, more than divisionof

permission state does not happen. After Put () practice,

more than past susceptibility of permission state does not

happen by doing so that may do gget () disable and

prevent achievement, and after get () achievement gget ()

achievement to do enable. And put () get () get2 () gget

() achievement according to lock () unlock () achievement

is possible or impossible from table 1.

That is, by practice about request of each method is

impossible and begins self-discipline after get into unlock

state while wait for an opportunity until get into unlock's

state in case is lock state, more than alteration of

permission state does not happen.

5. Conclusion

More than inheritance happens by conflict between

concurrency and concurrency when re-justice of inherited

method is essential to keep synchronization limitation

condition of same time object, and much researches to

solve these problem are held.

Designed C++ class that guard method is added lest

more than inheritance of this paper should happen. So

that, processed problem more than inheritance as minimize

re-right of method code and avoid method body's

correction. Also, offer advantage that can make use of

class unartificially, and do so that minimize re-right of

inherited method. So that can use easily making classes

that design hereafter to library, wish to do, and study

about solution of problem. More than inheritance that

happen in other object intention language.

In this paper, studied by 2004 flues seoil college

school ground research expense supports

Trans. KIEE. Vol. 54P, No. 1. MAR. 2005

병행 프로그래밍에서 상속 이상의 구현에 관한 연구 57

6. Reference

[1] C. Barry, L. Leung, P. Peter, K. Chiu, "Behaviour

equation as solution of inheritance anomaly in

concurrent object-oriented programming languages,"

IEEE'96, Proceedings of PDP'96, pp. 360-366, 1996.

[2] G. Agha, P. Wegner, A. Yonezawa, 'Research

Directions in Concurrent Object-Oriented

Programming', Massachusetts, MIT Press, 1993.

[3] S. E. Mitchell, A. J. Wellings, "Synchronization,

concurrent object-oriented programming and the

inheritance anomaly," Computer Language, Vol. 22,

No. 1, pp. 15-26, 1996.

[4] J. Meseguer, "Solving the inheritance anomaly in

concurrent object-oriented programming," ECOOP'93,

Object-Oriented.

[5] L. Thomas, "An Object-Oriented Concurrent Language

for Extensibility and Reuse of Synchronization

Components," Computers and Artificial Intelligence,

Vol. 15, No. 5, pp. 437-457, 1996.

저 자 소 개

조 명 현(曺 明 絃)

1961년 5월 22일 1992년 조선대학교

대학원 전기공학과 박사 현재 서일대학

전기과 부교수 주관심분야 : 제어및계측

로봇, 프로그램

Tel : 018-789-1083

E-mail : cmhyun01@mail.seoil.ac.kr

이 명 언(李 明 彦)

1960년 6월 11일 2004년 건국대학교

대학원 전기공학과 박사 현재 서일대학

전기과 겸임교수 주관심분야 : 기기및전

력전자, 전기설비설계, 프로그램

Tel : 011-795-1993

E-mail : emyungun@hanmail.net

