Epitope발현 DNA Vaccine과 Recombinant Vaccinia Virus를 이용한 Heterologous Prime-boost Vaccination에 의하여 유도되는 CD8+ T 세포 매개성 면역

CD8+ T Cell-mediated Immunity Induced by Heterologous Prime-boost Vaccination Based on DNA Vaccine and Recombinant Vaccinia Virus Expressing Epitope

  • 박성옥 (전북대학교 수의과대학 미생물학교실, 생체안전성연구소) ;
  • 윤현아 (전북대학교 수의과대학 미생물학교실, 생체안전성연구소) ;
  • ;
  • 이존화 (전북대학교 수의과대학 미생물학교실, 생체안전성연구소) ;
  • 채준석 (전북대학교 수의과대학 미생물학교실, 생체안전성연구소) ;
  • 어성국 (전북대학교 수의과대학 미생물학교실, 생체안전성연구소)
  • Park, Seong-Ok (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Yoon, Hyun-A (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Aleyas, Abi George (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Lee, John-Hwa (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Chae, Joon-Seok (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University) ;
  • Eo, Seong-Kug (Laboratory of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
  • 발행 : 2005.06.30

초록

Background: DNA vaccination represents an anticipated approach for the control of numerous infectious diseases. Used alone, however, DNA vaccine is weak immunogen inferior to viral vectors. In recent, heterologous prime-boost vaccination leads DNA vaccines to practical reality. Methods: We assessed prime-boost immunization strategies with a DNA vaccine (minigene, $gB_{498-505}$ DNA) and recombinant vaccinia virus $(vvgB_{498-505})$ expressing epitope $gB_{498-505}$ (SSIEF ARL) of CD8+ T cells specific for glycoprotein B (gB) of herpes simplex virus (HSV). Animals were immunized primarily with $gB_{498-505}$ epitope-expressing DNA vaccine/recombinant vaccinia virus and boosted with alternative vaccine type expressing entire Ag. Results: In prime-boost protocols using vvgBw (recombinant vaccinia virus expressing entire Ag) and $vvgB_{498-505}$, CD8+ T cell-mediated immunity was induced maximally at both acute and memory stages if primed with vvgBw and boosted with $vvgB_{498-505}$ as evaluated by CTL activity, intracellular IFN-staining, and MHC class I tetramer staining. Similarly $gB_{498-505}$ DNA prime-gBw DNA (DNA vaccine expressing entire Ag) boost immunization elicited the strongest CD8+ T cell responses in protocols based on DNA vaccine. However, the level of CD8+ T cell-mediated immunity induced with prime-boost vaccination using DNA vaccine expressing epitope or entire Ag was inferior to those based on vvgBw and $vvgB_{498-505}$. Of particular interest CD8+ T cell-mediated immunity was optimally induced when $vvgB_{498-505}$ was used to prime and gB DNA was used as alternative boost. Especially CD7+ T cell responses induced by such protocol was longer lasted than other protocols. Conclusion: These facts direct to search for the effective strategy to induce optimal CD8+ T cell-mediated immunity against cancer and viral infection.

키워드

참고문헌

  1. Gurunathan S, Klinman DM, Seder RA: DNA vaccines: immunology, application, and optimization. Annu Rev Immunol 18;927-974, 2000 https://doi.org/10.1146/annurev.immunol.18.1.927
  2. Kirman JR, Seder RA: DNA vaccination: the answer to stable, protective T cell memory? Curr Opin Immunol 15;471- 476, 2003 https://doi.org/10.1016/S0952-7915(03)00068-2
  3. Xiang Z, Ertl HC: Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity 2;129-135, 1995 https://doi.org/10.1016/S1074-7613(95)80001-8
  4. Ahlers JD, Dunlop N, Alling DW, Nara PL, Berzofsky JA: Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: granulocyte-macrophage colony-stimulating factor and TNF-alpha synergize with IL-12 to enhance induction of cytotoxic T lymphocytes. J Immunol 158;3947-3958, 1997
  5. Kim JJ, Nottingham LK, Sin JI, Tsai A, Morrison L, Oh J, Dang K, Hu Y, Kazahaya K, Bennett M, Dentchev T, Wilson DM, Chalian AA, Boyer JD, Agadjanyan MG, Weiner D: CD8 positive T cells influence antigen-specific immune responses through the expression of chemokines. J Clin Investig 102;1112-1124, 1998 https://doi.org/10.1172/JCI3986
  6. Lu Y, Xin KQ, Hamajima K, Tsuji T, Aoki I, Yang J, Sasaki S, Fukushima J, Yoshimura T, Toda S, Okada E, Okuda K: Macrophage inflammatory protein-1 (MIP-1) expression plasmid enhances DNA vaccine-induced immune response against HIV-1. Clin Exp Immunol 115;335-341, 1999 https://doi.org/10.1046/j.1365-2249.1999.00793.x
  7. Wu T, Kipps TJ: Deoxyribonucleic acid vaccines encoding antigens with rapid proteosome-dependent degradation are highly efficient inducers of cytolytic T lymphocytes. J Immunol 159;6037-6043, 1997
  8. Fu TM, Guan L, Friedman A, Ulmer JB, Liu MA, Donnelly JJ: Induction of MHC class I-CTL response by DNA immunization with ubiquitin-influenza virus nucleoproteinfusion antigens. Vaccine 16;1711-1717, 1998 https://doi.org/10.1016/S0264-410X(98)00134-0
  9. Schneider J, Langermans JA, Gilbert SC, Blanchard TJ, Twigg S, Naitza S, Hannan CM, Aidoo M, Crisanti A, Robson KJ, Smith GL, Hill AV, Thomas AW: A prime-boost immunisation regimen using DNA followed by recombinant modified vaccinia virus Ankara induces strong cellular immune responses against the Plasmodium falciparum TRAP antigen in chimpanzees. Vaccine 19;4595-4602, 2001 https://doi.org/10.1016/S0264-410X(01)00260-2
  10. Rogers WO, Baird JK, Kumar A, Tine JA, Weiss W, Aguiar JC, Gowda K, Gwadz R, Kumar S, Gold M, Hoffman SL: Multistage multiantigen heterologous prime boost vaccine for Plasmodium knowlesi malaria provides partial protection in rhesus macaques. Infect Immun 69;5565-5572, 2001 https://doi.org/10.1128/IAI.69.9.5565-5572.2001
  11. Kent SJ, Zhao A, Best SJ, Chandler JD, Boyle DB, Ramshaw IA: Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72;10180-10188, 1998
  12. Amara RR, Villinger F, Altman JD, Lydy SL, O'Neil SP, Staprans SI, Montefiori DC, Xu Y, Herndon JG, Wyatt LS, Candido MA, Kozyr NL, Earl PL, Smith JM, Ma HL, Grimm BD, Hulsey ML, McClure HM, McNicholl JM, Moss B, Robinson HL: Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Vaccine 20; 1949-1955, 2002 https://doi.org/10.1016/S0264-410X(02)00076-2
  13. Vuola JM, Keating S, Webster DP, Berthoud T, Dunachie S, Gilbert SC, Hill AV: Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J Immunol 174;449- 455, 2005 https://doi.org/10.4049/jimmunol.174.1.449
  14. Leong KH, Ramsay AJ, Morin MJ, Robinson HL, Boyle DB, Ramshaw IA: Generation of enhanced immune responses by consecutive immunization with DNA and recombinant fowlpox viruses. In: Brown F, Chanock H, Norrby E, eds: Vaccine 95. p.327, Cold Spring Harber Laboratory Press, Cold Spring Harber, 1995
  15. Zinkernagel RM: Immunology taught by viruses. Science 271; 173-178, 1996 https://doi.org/10.1126/science.271.5246.173
  16. Fernando GJ, Khammanivong V, Leggatt GR, Liu WJ, Frazer IH: The number of long-lasting functional memory CD8+ T cells generated depends on the nature of the initial nonspecific stimulation. Eur J Immunol 32;1541-1549, 2001 https://doi.org/10.1002/1521-4141(200206)32:6<1541::AID-IMMU1541>3.0.CO;2-S
  17. Shedlock DJ, Shen H: Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300;337- 339, 2003 https://doi.org/10.1126/science.1082305
  18. Sun JC, Bevan MJ: Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300;339- 342, 2003 https://doi.org/10.1126/science.1083317
  19. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP: CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421;852-856, 2003 https://doi.org/10.1038/nature01441
  20. Bourgeois C, Rocha B, Tanchot C: A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297;2060-2063, 2002 https://doi.org/10.1126/science.1072615
  21. Wild J, Grusby MJ, Schirmbeck R, Reimann J: Priming MHCI- restricted cytotoxic T lymphocyte responses to exogenous hepatitis B surface antigen is CD4+ T cell dependent. J Immunol 163;1880-1887, 1999
  22. Stober D, Jomantaite I, Schirmbeck R, Reimann J: NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J Immunol 170; 2540-2548, 2003 https://doi.org/10.4049/jimmunol.170.5.2540
  23. Schirmbeck R, Stober D, El-Kholy S, Riedl P, Reimann J: The immunodominant, Ld-restricted T cell response to hepatitis B surface antigen (HBsAg) efficiently suppresses T cell priming to multiple Dd-, Kd-, and Kb-restricted HBsAg epitopes. J Immunol 168;6253-6262, 2002 https://doi.org/10.4049/jimmunol.168.12.6253
  24. Kursar M, Bonhagen K, Fensterle J, Kohler A, Hurwitz R, Kamradt T, Kaufmann SH, Mittrucker HW: Regulatory CD4+ CD25+ T cells restrict memory CD8+ T cell responses. J Exp Med 196;1585-1592, 2002 https://doi.org/10.1084/jem.20011347
  25. Murakami M, Sakamoto A, Bender J, Kappler J, Marrack P: CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc Natl Acad Sci USA 99;8832-8837, 2002
  26. Gierynska M, Kumaraguru U, Eo SK, Lee S, Krieg A, Rouse BT: Induction of CD8 T-cell-specific systemic and mucosal immunity against herpes simplex virus with CpG-peptide complexes. J Virol 76;6568-6576, 2002 https://doi.org/10.1128/JVI.76.13.6568-6576.2002
  27. Carroll MW, Moss B: Poxviruses as expression vectors. Curr Opin Biotechnol 8;573-577, 1997 https://doi.org/10.1016/S0958-1669(97)80031-6
  28. Zavala F, Rodrigues M, Rodriguez D, Rodriguez JR, Nussenzweig RS, Esteban M: A striking property of recombinant poxviruses: efficient inducers of in vivo expansion of primed CD8(+) T cells. Virology 280;155-159, 2001 https://doi.org/10.1006/viro.2000.0792
  29. Kuklin N, Daheshia M, Karem K, Manickan E, Rouse BT: Induction of mucosal immunity against herpes simplex virus by plasmid DNA immunization. J Virol 71;3138-3145, 1997
  30. Toka FN, Gierynska M, Rouse BT: Codelivery of CCR7 ligands as molecular adjuvants enhances the protective immune response against herpes simplex virus type 1. J Virol 77;12742-12752, 2003 https://doi.org/10.1128/JVI.77.23.12742-12752.2003
  31. Eo SK, Gierynska M, Kamar AA, Rouse BT: Prime-boost immunization with DNA vaccine: mucosal route of administration changes the rules. J Immunol 166;5473-5479, 2001 https://doi.org/10.4049/jimmunol.166.9.5473
  32. Eo SK, Kumaraguru U, Rouse BT: Plasmid DNA encoding CCR7 ligands compensate for dysfunctional CD8+ T cell responses by effects on dendritic cells. J Immunol 167;3592- 3599, 2001 https://doi.org/10.4049/jimmunol.167.7.3592
  33. Kumaraguru U, Rouse BT: Application of the intracellular gamma interferon assay to recalculate the potency of CD8 (+) T-cell responses to herpes simplex virus. J Virol 74; 5709-5711, 2000 https://doi.org/10.1128/JVI.74.12.5709-5711.2000
  34. Stein-Streilein J, Sonoda KH, Faunce D, Zhang-Hoover J: Regulation of adaptive immune responses by innate cells expressing NK markers and antigen-transporting macrophages. J Leukoc Biol 67;488-494, 2000 https://doi.org/10.1002/jlb.67.4.488
  35. Robinson HL: DNA vaccines for immunodeficiency viruses. AIDS 11;S109-119, 1997
  36. Ramshaw IA, Ramsay AJ: The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today 21; 163-165, 2000 https://doi.org/10.1016/S0167-5699(00)01612-1
  37. Harrington LE, Most Rv R, Whitton JL, Ahmed R: Recombinant vaccinia virus-induced T-cell immunity: quantitation of the response to the virus vector and the foreign epitope. J Virol 76;3329-3337, 2002 https://doi.org/10.1128/JVI.76.7.3329-3337.2002
  38. Badovinac VP, Porter BB, Harty JT: Programmed contraction of CD8(+) T cells after infection. Nat Immunol 3;619-626, 2002 https://doi.org/10.1038/nrm880
  39. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188;2205-2213, 1998 https://doi.org/10.1084/jem.188.12.2205
  40. D'Souza WN, Lefrancois L: IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J Immunol 171;5727-5735, 2003 https://doi.org/10.4049/jimmunol.171.11.5727
  41. Lanzavecchia A, Sallusto F: Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2;982-987, 2002 https://doi.org/10.1038/nri959
  42. Gett AV, Sallusto F, Lanzavecchia A, Geginat J: T cell fitness determined by signal strength. Nat Immunol 4;355-360, 2003 https://doi.org/10.1038/ni908
  43. Wong P, Pamer EG: Cutting edge: antigen-independent CD8 T cell proliferation. J Immunol 166;5864-5868, 2001 https://doi.org/10.4049/jimmunol.166.10.5864
  44. Kaech SM, Ahmed R: Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2;415-422, 2001 https://doi.org/10.1038/87720
  45. van Stipdonk MJ, Lemmens EE, Schoenberger SP: Naive CTLs require a single rief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2;423- 429, 2001 https://doi.org/10.1038/87730
  46. Williams MA, Bevan MJ: Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173; 6694-6702, 2004 https://doi.org/10.4049/jimmunol.173.11.6694